[1] |
ITU. IMT Vision-Framework and Overall Objectives of the Future Development of IMT for 2030 and Beyond[R]. ITU, 2023.
|
[2] |
RAPPAPORT T S, SUN S, MAYZUS R, et al. Millimeter Wave Mobile Communications for 5G Cellular:It Will Work![J]. IEEE Access, 2013, 1:335-349.
|
[3] |
AKYILDIZ I F, JORNET J M, HAN C. Terahertz Band:Next Frontier for Wireless Communications[J]. Physical Communication, 2014, 12:16-32.
|
[4] |
崔新雨, 伍杰, 周一青, 等. 空天地一体化融合组网的挑战与关键技术[J]. 西安电子科技大学学报, 2023, 50(1):1-11.
|
|
CUI Xi nyu, WU Jie, ZHOU Yiqing, et al. Challenges of and Key Technologies for the Air-Space-Ground Integrated Network[J]. Journal ofXidian University, 2023, 50(1):1-11.
|
[5] |
IMT-2030(6G)推进组. 6G总体愿景与潜在关键技术白皮书(2021)[R/OL].[2021-06-01]. http://www.caict.ac.cn/kxyj/qwfb/ztbg/202106/t20210604_378499.htm.
|
[6] |
周儒雅, 唐万恺, 李潇, 等. 基于可重构智能表面的移动通信简要综述[J]. 移动通信, 2020, 44(6):63-69.
|
|
ZHOU Ruya, TANG Wankai, LI Xiao, et al. A Brief Survey of Mobile Communications through Reconfigurable Intelligent Surfaces[J]. Mobile Communications, 2020, 44(6):63-69.
|
[7] |
WU Q, ZHANG S, ZHENG B, et al. Intelligent Reflecting Surface-Aided Wireless Communications:A tutorial[J]. IEEE Transactions on Communications, 2021, 69(5):3313-3351.
|
[8] |
HAN Y, TANG W, JIN S, et al. Large Intelligent Surface-Assisted Wireless Communication Exploiting Statistical CSI[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8):8238-8242.
|
[9] |
HUANG C, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable Intelligent Surfaces for Energy Efficiency in Wireless Communication[J]. IEEE Transactions on Wireless Communications, 2019, 18(8):4157-4170.
|
[10] |
NEMATI M, PARK J, CHOI J. RIS-Assisted Coverage Enhancement in Millimeter-Wave Cellular Networks[J]. IEEE Access, 2020, 8:188171-188185.
|
[11] |
CHEN W, WEN C K, LI X, et al. Channel Customization for Joint Tx-RISs-Rx Design in HybridmmWave Systems[J]. IEEE Transactions on Wireless Communications, 2023, 22(11):8304-8319.
|
[12] |
SANG J, YUAN Y, TANG W, et al. Coverage Enhancement by Deploying RIS in 5G Commercial Mobile Networks:Field Trials[J]. IEEE Wireless Communications, 2024, 31(1):172-180.
|
[13] |
KAYRAKLIK S, YILDIRIM I, GEVEZ Y, et al. Indoor Coverage Enhancement for RIS-Assisted Communication Systems:Practical Measurements and Efficient Grouping[C]//ICC 2023-IEEE International Conference on Communications. Piscataway:IEEE, 2023:485-490.
|
[14] |
费丹, 陈晨, 郑鹏, 等. 基于智能超表面的室内覆盖增强技术研究与实验验证[J]. 电子与信息学报, 2022, 44(7):2374-2381.
|
|
FEI Dan, CHEN Chen, ZHENG Peng, et al. Research and Experimental Verification of Reconfigurable Intelligent Surface in Indoor Coverage Enhancement[J]. Journal of Electronics & Information Technology, 2022, 44(7):2374-2381.
|
[15] |
刘海霞, 易浩, 马向进, 等. 基于无源可重构智能超表面的室内无线信号覆盖增强[J]. 通信学报, 2022, 43(12):32-44.
doi: 10.11959/j.issn.1000-436x.2022229
|
|
LIU Haixia, YI Hao, MA Xiangjin, et al. Indoor Wireless Signal Coverage and Enhancement Based on Passive Reconfigurable Intelligent Metasurface[J]. Journal on Communications, 2022, 43(12):32-44.
doi: 10.11959/j.issn.1000-436x.2022229
|
[16] |
TANG W, CHEN X, CHEN M Z, et al. Path Loss Modeling and Measurements for Reconfigurable Intelligent Surfaces in the Millimeter-Wave Frequency Band[J]. IEEE Transactions on Communications, 2022, 70(9):6259-6276.
|
[17] |
MENG S, TANG W, YU Z, et al. An Efficient Multi-Beam Generation Method for Millimeter-Wave Reconfigurable Intelligent Surface:Simulation and Measurement[J]. IEEE Transactions on Vehicular Technology, 2023, 72(10):13752-13757.
|