西安电子科技大学学报 ›› 2025, Vol. 52 ›› Issue (1): 142-151.doi: 10.19665/j.issn1001-2400.20241009

• 信息与通信工程 • 上一篇    下一篇

卷积循环神经网络的高光谱图像解混方法

孔繁锵1(), 余圣杰1(), 王坤2(), 方煦3(), 吕志杰1()   

  1. 1.南京航空航天大学 航天学院,江苏 南京 210016
    2.空军装备部驻无锡地区第一军事代表室,江苏 无锡 214000
    3.中国航空工业集团公司雷华电子技术研究所,江苏 无锡 214000
  • 收稿日期:2024-03-31 出版日期:2024-10-30 发布日期:2024-10-30
  • 通讯作者: 孔繁锵(1980—)男,教授,E-mail:kongfq@nuaa.edu.cn
  • 作者简介:余圣杰(2000—)男,南京航空航天大学硕士研究生,E-mail:yushengjie2000@nuaa.edu.cn
    王 坤(1996—)男,工程师,E-mail:ytwk@163.com
    方 煦(1989—)男,工程师,E-mail:fangx038@avic.com
    吕志杰(1999—)男,南京航空航天大学硕士研究生,E-mail:zhijie_2022@nuaa.edu.cn
  • 基金资助:
    国家自然科学基金(62471224)

Hyperspectral image unmixing method based on convolutional recurrent neural networks

KONG Fanqiang1(), YU Shengjie1(), WANG Kun2(), FANG Xu3(), LV Zhijie1()   

  1. 1. Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
    2. The First Military Representative Office of Empty Equipment Stationed in Wuxi,Wuxi 214000,China
    3. AVIC Leihua Electronic Technology Research,Wuxi 214000,China
  • Received:2024-03-31 Online:2024-10-30 Published:2024-10-30

摘要:

针对传统的解混方法和基于自编码器的解混网络方法,利用空间信息提升了解混性能,但未深入挖掘和利用光谱特征,而光谱特征和空间信息的有效结合能够进一步提高解混性能,因此,提出了基于双向卷积长短期记忆网络的解混框架。该框架采用创新性的网络结构设计,通过卷积层深入挖掘空间特征,同时利用卷积长短期记忆单元充分挖掘波段间的光谱变异性及其光谱相关性,有效处理光谱维度的序列信息,从而实现对高光谱数据更加精准和高效的分析。为了更加细致地区分和利用高光谱数据中不同谱段的特异性,采用深度光谱分区方法优化网络输入,通过自适应学习机制对不同光谱区域精细化处理,增强了模型对高光谱数据中复杂光谱关系的捕捉能力,进一步提升网络的解混性能。在模拟和多个真实高光谱数据集上的对比实验表明,该方法在解混精度和模型鲁棒性等方面均优于现有方法,特别是在处理复杂地物光谱特征时,表现出良好的泛化能力和稳定性,能够准确估计端元和丰度。

关键词: 高光谱图像, 循环神经网络, 自编码器, 卷积长短期记忆网络, 深度光谱分区

Abstract:

While traditional unmixing methods and autoencoder-based unmixing networks have improved the unmixing performance by utilizing spatial information,they have not fully explored and leveraged spectral features.The effective integration of spectral features with spatial information could further enhance the unmixing performance.Therefore,an unmixing framework based on a Bidirectional Convolutional Long Short-Term Memory Autoencoder Network(CLAENet) with an innovative network architecture design is proposed.This framework deeply mines spatial features through convolutional layers,while convolutional long short-term memory units are used to fully explore spectral variability and the correlations between bands,effectively processing the sequential information on the spectral dimension for a more accurate and efficient analysis of hyperspectral data.To further distinguish and utilize the specificity of different spectral bands in hyperspectral data,a deep spectral partitioning method is adopted to optimize the network input.An adaptive learning mechanism is employed for refined processing of different spectral regions,enhancing the model's capability to capture complex spectral relationships within hyperspectral data and further improving unmixing performance.Comparative experiments conducted on simulated and multiple real hyperspectral datasets demonstrate that this method outperforms existing methods in terms of unmixing accuracy and model robustness.Notably,it exhibits good generalization and stability when handling complex spectral features of land cover,thus accurately estimating endmembers and abundances.

Key words: hyperspectral imaging, recurrent neural networks, autoencoders, convlstm, deep spectral partitioning

中图分类号: 

  • TP751/P2