[1] |
WALLACE G K. The JPEG Still Picture Compression Standard[J]. IEEE Transactions on Consumer Electronics, 1992, 38(1):xviii-xxxiv.
|
[2] |
SKODRAS A, CHRISTOPOULOS C, EBRAHIMI T. The JPEG 2000 Still Image Compression Standard[J]. IEEE Signal Processing Magazine, 2001, 18(5):36-58.
|
[3] |
LAINEMA J, BOSSEN F, HAN W J, et al. Intra Coding of The Hevc Standard[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2012, 22(12):1792-1801.
|
[4] |
GAO H, ESENLIK S, ALSHINA E, et al. Geometric Partitioning Mode in Versatile Video Coding:Algorithm Review and Analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2020, 31(9):3603-3617.
|
[5] |
ZHANG J, WANG H, WANG Y, et al. Deep Network Based on Up and Down Blocks Using Wavelet Transform and Successive Multi-Scale Spatial Attention for Cloud Detection[J]. Remote Sensing of Environment, 2021, 261:112483.1-18.
|
[6] |
ZHANG J, SHI X L, WU J, et al. Cloud Detection Method based on Spatial-Spectral Features and Encoder-Decoder Feature Fusion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5407915.1-11.
|
[7] |
ZHANG J, SHI X L, ZHENG C Y, et al. MRPFA-Net for Shadow Detection in Remote-Sensing Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5514011.1-11.
|
[8] |
ZHANG J, SONG L N, WANG Y C, et al. Attention Mechanism with Spatial Spectrum Dense Connection and Context Dynamic Convolution for Cloud Detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61:5408211.1-11.
|
[9] |
ZHANG J, ZHENG R J, CHEN X, et al. Spectral Correlation and Spatial High-Low Frequency Information of Hyperspectral Image Super-Resolution Network[J]. Remote Sensing, 2023, 15(9):2472.1-28.
|
[10] |
ZHANG J, ZHENG R J, WAN Z K, et al. Hyperspectral Image Super-Resolution Based on Feature Diversity Extraction[J]. Remote Sensing, 2024, 16(3):436.1-24.
|
[11] |
ZHANG J, HONG Z L, et al. Few-Shot Object Detection for Remote Sensing Imagery Using Segmentation Assistance and Triplet Head[J]. Remote Sensing, 2024, 16(19):3630.1-21.
|
[12] |
王娟, 刘子杉, 武明虎, 等. 融合超分辨率重建技术的多尺度目标检测算法[J]. 西安电子科技大学学报, 2023, 50(3):122-131.
|
|
WANG Juan, LIU Zishan, WU Minghu, et al. Multi-Scale Object Detection Algorithm Combined with Super-Resolution Reconstruction Technology[J]. Journal of Xidian University, 2023, 50(3):122-131.
|
[13] |
刘晓雯, 郭继昌, 郑司达. 采用渐进式网络的弱监督显著性目标检测算法[J]. 西安电子科技大学学报, 2023, 50(1):48-57.
|
|
LIU Xiaowen, GUO Jichang, ZHENG Sida. Weakly-Supervised Salient Object Detection with the Multi-Scale Progressive Network[J]. Journal of Xidian University, 2023, 50(1):48-57.
|
[14] |
DONG C, DENG Y, LOY C C, et al. Compression Artifacts Reduction by ADeep Convolutional Network[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway:IEEE, 2015:576-584.
|
[15] |
TODERICI G, VINCENT D, JOHNSTON N, et al. Full Resolution Image Compression with Recurrent Neural Networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:5306-5314.
|
[16] |
LYU H, SHA N, QIN S, et al. Advancesin Neural Information Processing Systems[J]. Advances in Neural Information Processing Systems, 2019, 32:1-11.
|
[17] |
SZEGEDY C, IOFFE S, VANHOUCKE V, et al. Inception-V4,Inception-Resnet and The Impact of Residual Connections on Learning[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2017:4278-4284.
|
[18] |
DENG J, DONG W, SOCHER R, et al. Imagenet:A Large-Scale Hierarchical Image Database[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2009:248-255.
|
[19] |
LEE K. Introducing Big Basin:Our Next-Generation Ai Hardware(2017)[EB/OL].[2019-10-20]. https://code.facebook.com/posts/1835166200089399/introducing-big-basin.
|
[20] |
JIA X, SONG S, HE W, et al. Highly Scalable Deep Learning Training System with Mixed-Precision:Training Imagenet in Four Minutes(2018)[J/OL].[2023-12-01]. https://arxiv.org/abs/1807.11205.
|
[21] |
JIN Z, IQBAL M Z, ZOU W, et al. Dual-Stream Multi-Path Recursive Residual Network for JPEG Image Compression Artifacts Reduction[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 31(2):467-479.
|
[22] |
LIN M H, YEH C H, LIN C H, et al. Deep Multi-Scale Residual Learning-based Blocking Artifacts Reduction for Compressed Images[C]//Proceedings of the IEEE International Conference on Artificial Intelligence Circuits and Systems. Piscataway:IEEE, 2019:18-19.
|
[23] |
ZHANG J, ZHANG S, WANG H, et al. Image Compression Network Structure Based on Multiscale Region of Interest Attention Network[J]. Remote Sensing, 2023, 15(2):522.
|
[24] |
LI J, FANG F, MEI K, et al. Multi-Scale Residual Network for Image Super-resolution[C]//Proceedings of the European Conference on Computer Vision(ECCV). Heidelberg:Springer, 2018:517-532.
|
[25] |
LIN Y, HAN S, MAO H, et al. Deep Gradient Compression:Reducing the Communication Bandwidth for Distributed Training(2017)[J/OL].[2023-01-05]. https://arxiv.org/abs/1712.01887.
|
[26] |
KINGMA D P, BA J. Adam:A Method for Stochastic Optimization(2014)[J/OL].[2020-02-21]. https://arxiv.org/abs/1412.6980.
|
[27] |
BALLÉ J, MINNEN D, SINGH S, et al. Variational Image Compression with AScale Hyperprior(2018)[J/OL].[2021-10-04]. https://arxiv.org/abs/1802.01436.
|
[28] |
CHENG Z, SUN H, TAKEUCHI M, et al. Learned Image Compression with Discretized Gaussian Mixture Likelihoods and Attention Modules[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2020:7939-7948.
|
[29] |
HU Y, YANG W, LIU J. Coarse-O-Fine Hyper-Prior Modeling for Learned Image Compression[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2020:11013-11020.
|
[30] |
HE D, ZHENG Y, SUN B, et al. Checkerboard Context Model for Efficient Learned Image Compression[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2021:14771-14780.
|
[31] |
XIANG S, LIANG Q. Remote Sensing Image Compression Based on High-Frequency and Low-Frequency Components[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62:1-15.
|