西安电子科技大学学报 ›› 2025, Vol. 52 ›› Issue (1): 117-129.doi: 10.19665/j.issn1001-2400.20241013

• 信息与通信工程 • 上一篇    下一篇

机载双基雷达SR-STAP杂波抑制方法

郭明明1,2(), 潘时龙1(), 曹兰英2(), 王祥传1()   

  1. 1.南京航空航天大学 微波光子技术国家级重点实验室,江苏 南京 211106
    2.中国航空工业集团公司 雷华电子技术研究所,江苏 无锡 214128
  • 收稿日期:2024-05-11 出版日期:2024-12-24 发布日期:2024-12-24
  • 作者简介:郭明明(1987—),女,南京航空航天大学博士研究生,高级工程师,E-mail:guo_greeting@126.com
    潘时龙(1982—),男,教授,E-mail:pans@nuaa.edu.cn
    曹兰英(1970—),女,副总工程师,E-mail:clying2005@163.com
    王祥传(1987—),男,研究员,E-mail:wangxch@nuaa.edu.cn
  • 基金资助:
    江苏省卓越博士后项目(2024ZB471)

Airborne bistatic radar SR-STAP clutter suppression algorithm

GUO Mingming1,2(), PAN Shilong1(), CAO Lanying2(), WANG Xiangchuan1()   

  1. 1. National Key Laboratory of Microwave Photonics,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China
    2. AVIC Leihua Electronic Technology Research Institute,Wuxi 214128,China
  • Received:2024-05-11 Online:2024-12-24 Published:2024-12-24

摘要:

目前基于稀疏恢复的空时自适应处理方法,是通过将角度-多普勒平面细分为多个离散格点的方式来构建导向矢量字典的。然而,当这种方法应用于机载双基雷达杂波抑制时,会面临格点失配问题,从而导致杂波抑制算法性能下降。针对这个问题,提出了基于原子范数最小化技术进行机载双基雷达杂波抑制的方法,基于原子范数最小化的杂波抑制方法不用生成离散格点矩阵,而是直接在连续域上进行建模。利用杂波协方差矩阵的半正定性、块-托普利兹属性和低秩特性,结合交替方向乘子法去迭代求解原子范数最小化问题,可以准确估计出杂波子空间。然后,通过特征分解直接计算杂波的协方差矩阵,进而提高杂波抑制性能。仿真结果证明,在可用样本数量较少的情况下,所提算法由于规避了格点失配问题,与传统稀疏恢复方法相比,所提算法能够更精确地估计杂波协方差矩阵,具备更好的杂波抑制效果。

关键词: 机载双基雷达, 杂波抑制, 稀疏恢复, 原子范数最小化

Abstract:

The existing sparse-recovery-based space-time adaptive processing(SR-STAP) method typically discretizes the angular Doppler plane into a multitude of grid points to generate a guidance dictionary.However,when these methods are employed for clutter suppression in bistatic airborne radars,they would encounter the issue of grid point mismatch,which significantly impairs the algorithm performance.In response to this problem,this paper presents an innovative approach using the atomic norm minimization(ANM) for clutter suppression in bistatic airborne radars.Unlike traditional methods,the ANM operates in the continuous domain without the need to generate a discrete grid matrix.Leveraging the positive semi-definiteness,block-Toplitz prosperity and low-rank nature of the clutter covariance matrix(CCM),the alternating direction multiplier method(ADMM) is used to iteratively solve the ANM problem,leading to the accurate estimation of the clutter subspace.Subsequently,the CCM is directly computed through eigen decomposition,improving the clutter suppression performance.Simulation results indicate that the proposed algorithm circumvents the grid-mismatch problem,achieves a more precise CCM estimation,and outperforms convolutional sparse recovery methods in terms of clutter suppression performance,particularly with fewer training samples.

Key words: airborne bistatic radar, clutter suppression, sparse recovery, atomic norm minimization

中图分类号: 

  • TN958