[1] |
BRENNAN L E, REED L S. Theory of Adaptive Radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1973, AES, 9(2):237-252.
|
[2] |
KLEMM R. Principles of Space, Time Adaptive Processing[M]. London: IET Radar,Sonar and Navigation, 2006.
|
[3] |
REED L S, MADDETT J D, BRENNAN L E. Rapid Convergence Rate in Adaptive Arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES, 10(6):853-863.
|
[4] |
YANG Z C, LI X, WANG H Q, et al. Adaptive Clutter Suppression Based on Iterative Adaptive Approach for Airborne Radar[J]. Signal Processing, 2013, 93(12):3567-3577.
|
[5] |
YANG Z, LI X, WANG H Q, et al. On Clutter Sparsity Analysis in Space-Time Adaptive Processing Airborne Radar[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5):1214-1218.
|
[6] |
DUAN K, WANG Z, XIE W, et al. Sparsity,Based STAP Algorithm with Multiple Measurement Vectors via Sparse Bayesian Learning Strategy for Airborne Radar[J]. IET Signal Processing, 2017, 11(5):544-553.
|
[7] |
LIU C, WANG T, ZHANG S, et al. Clutter Suppression Based on Iterative Reweighted Methods with Multiple Measurement Vectors for Airborne Radar[J]. IET Radar Sonar Navigation, 2022, 16(9):1446-1459.
|
[8] |
WANG Z T, XIE W C, DUAN K Q, et al. Clutter Suppression Algorithm Based on Fast Converging Sparse Bayesian Learning for Airborne Radar[J]. Signal Processing, 2017, 130:159-168.
|
[9] |
MA Z Q, LIU Y M, MENG H D, et al. Sparse Recovery,Based Space,Time Adaptive Processing with Array Error Self,Calibration[J]. Electronics Letters, 2014, 50(13):952-954.
|
[10] |
YANG Z, LAMARE R C, LIU W. Sparsity,Based STAP Design Based on Alternating Direction Method with Gain Phase Errors(2017)[J/OL].[2017-06-24]. https://arxiv.org/abs/1706.07975.
|
[11] |
CUI W C, WANG T, WANG D G, et al. Robust SR, STAP Algorithms in Partly Calibrated Arrays for Airborne Radar[J]. Signal Processing, 2024, 219:109389.
|
[12] |
WANG D, WANG T, CUI W, et al. A Clutter Suppression Algorithm via Enhanced Sparse Bayesian Learning for Airborne Radar[J]. IEEE Sensors Journal, 2023, 23(10):10900-10911.
|
[13] |
LIU K, WANG T, HUANG W. An Efficient Sparse Recovery STAP Algorithm for Airborne Bistatic Radars Based on Atomic Selection under the Bayesian Framework[J]. Remote Sensing, 2024, 16(14):2534.
|
[14] |
CAO J, WANG T, WANG D. Beam,Space Post,Doppler Reduced,Dimension STAP Based on Sparse Bayesian Learning[J]. Remote Sensing, 2024, 16(14):307.
|
[15] |
ZOU B, WANG X, FENG W, et al. STAP Method Based on Sparse Recovery and Unsupervised Learning for Airborne Radar Clutter Suppression[J]. Remote Sensing, 2022, 14(14):3472.
|
[16] |
ZHANG X, WANG T, WANG D. On Efficient Maximum Likelihood Algorithm for Clutter Suppression[J]. IEEE Signal Processing Letters, 2024, 31:1399-1403.
|
[17] |
GUO Q, LIU L. Robust STAP of Dictionary Local Adaptive Filling and Learning for Nonstationary Clutter Suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(2):1284-1298.
|
[18] |
CHAE D H, SADEGHI P, KENNEDY R A. Effects of Basis,Mismatch in Compressive Sampling of Continuous Sinusoidal Signals[C]// 2010 2nd International Conference on Future Computer and Communication.Piscataway:IEEE, 2010:739-743.
|
[19] |
BAI G T, TAO R, ZHAO J, et al. Parameter,Searched OMP Method for Eliminating Basis Mismatch in Space,Time Spectrum Estimation[J]. Signal Processing, 2017, 138:11-15.
|
[20] |
CANDES E J,FERNANDEZ GRANDA C. Towards a Mathematical Theory of Super,resolution[J]. Communications on Pure and Applied Mathematics, 2014, 67(6):906-956.
|
[21] |
TANG G, BHASKAR B N, SHAH P, et al. Compressed Sensingoff the Grid[J]. IEEE Transactions on Information Theory, 2013, 59(11):7465-7490.
|
[22] |
FENG W K, GUO Y D, ZHANG Y S, et al. Airborne Radar Space Time Adaptive Processing Based on Atomic Norm Minimization[J]. Signal Processing, 2018, 148:31-40.
|
[23] |
CHI Y, CHEN Y. Compressive Two,Dimensional Harmonic Retrieval via Atomic Norm Minimization[J]. IEEE Transactions on Signal Processing, 2015, 63(4):1030-1042.
|