西安电子科技大学学报 ›› 2025, Vol. 52 ›› Issue (1): 22-36.doi: 10.19665/j.issn1001-2400.20241014
收稿日期:
2024-04-04
出版日期:
2024-11-05
发布日期:
2024-11-05
通讯作者:
杨 帆(1973—),男,副教授,E-mail:fany@xidian.edu.cn作者简介:
宋文超(1999—),男,西安电子科技大学硕士研究生,E-mail:wcsong@stu.xidian.edu.cn;基金资助:
SONG Wenchao(), YANG Fan(
), XING Zehua(
), ZHANG Yujie(
)
Received:
2024-04-04
Online:
2024-11-05
Published:
2024-11-05
摘要:
准确预测网络流量的变化,可以帮助运营商提前进行资源分配和调度,最大程度减少网络拥塞。现有的网络流量多步预测方法难以捕获流量序列的长相关性,在多步预测任务上精度较低,基于此,提出了一种时间二维变化建模的网络流量多步预测方法。该方法首先利用门控循环单元对网络流量序列进行编码,以实现网络流量时间相关性的精准表征;然后利用网络流量周期特征对其进行重构,将一维的流量序列转化为二维,重构后的流量序列长度被压缩,特征更为集中,使得模型能够有效感知其长相关特征。最后通过新型卷积神经网络捕获重构后流量序列的二维特征,并进行加权融合得到最终的预测结果。仿真结果表明,相较于主流的网络流量多步预测方法,所提方法均方根误差至少降低约8.69%,平均绝对误差至少降低约8.96%,平均百分比误差至少降低约11.73%。实验结果说明所提方法能够有效挖掘网络流量长相关特征,在网络流量多步预测任务中具有更高的预测精度。
中图分类号:
宋文超, 杨帆, 邢泽华, 张钰杰. 时间二维变化建模的网络流量多步预测方法[J]. 西安电子科技大学学报, 2025, 52(1): 22-36.
SONG Wenchao, YANG Fan, XING Zehua, ZHANG Yujie. Multi-step prediction method for network traffic based on temporal 2D-variation modeling[J]. Journal of Xidian University, 2025, 52(1): 22-36.
表2
不同卷积神经网络特征提取模块对评价指标的影响"
RMSE | MAE | MAPE | R2 | |
---|---|---|---|---|
AlexNet | 57.584 | 41.998 | 0.229 | 0.479 |
VGG-16 | 57.957 | 41.574 | 0.227 | 0.472 |
Inception v1 | 69.384 | 48.138 | 0.286 | 0.244 |
Inception v2 | 77.527 | 51.764 | 0.304 | 0.056 |
ResNet50 | 64.338 | 46.691 | 0.283 | 0.350 |
DenseNet | 83.145 | 64.951 | 0.397 | -0.086 |
MobileNet | 67.748 | 50.305 | 0.305 | 0.279 |
EfficientNet | 77.531 | 57.556 | 0.360 | 0.056 |
ConvNeXt | 57.393 | 40.227 | 0.223 | 0.482 |
表3
不同模型在不同输出步长下的评价指标值"
步长 | GRU | CNN- LSTM | GRU- LSTM | FEDformer | TimesNet | TCN | DLinear | GRU-Conv TimesNet | |
---|---|---|---|---|---|---|---|---|---|
RMSE | 1 | 21.503 | 21.213 | 20.679 | 21.302 | 21.941 | 21.522 | 20.256 | 22.351 |
24 | 53.068 | 49.513 | 47.267 | 44.749 | 44.503 | 43.540 | 40.665 | 38.121 | |
48 | 62.968 | 60.388 | 59.784 | 58.185 | 58.450 | 53.022 | 47.829 | 44.007 | |
72 | 67.431 | 65.454 | 60.641 | 60.321 | 69.384 | 59.890 | 56.984 | 46.979 | |
MAE | 1 | 15.960 | 15.576 | 15.315 | 15.556 | 15.257 | 15.617 | 14.669 | 15.130 |
24 | 37.695 | 35.462 | 32.729 | 32.106 | 31.731 | 30.439 | 27.637 | 25.364 | |
48 | 53.877 | 49.044 | 42.199 | 40.897 | 40.134 | 38.811 | 36.633 | 30.539 | |
72 | 61.833 | 56.856 | 50.224 | 51.883 | 48.138 | 44.709 | 46.317 | 31.719 | |
MAPE | 1 | 0.100 | 0.095 | 0.099 | 0.094 | 0.090 | 0.090 | 0.091 | 0.089 |
24 | 0.305 | 0.268 | 0.287 | 0.224 | 0.176 | 0.162 | 0.201 | 0.143 | |
48 | 0.453 | 0.427 | 0.385 | 0.303 | 0.236 | 0.193 | 0.252 | 0.165 | |
72 | 0.566 | 0.532 | 0.398 | 0.354 | 0.286 | 0.236 | 0.352 | 0.174 | |
R2 | 1 | 0.928 | 0.931 | 0.934 | 0.922 | 0.927 | 0.927 | 0.938 | 0.924 |
24 | 0.569 | 0.604 | 0.622 | 0.696 | 0.698 | 0.677 | 0.756 | 0.777 | |
48 | 0.327 | 0.386 | 0.423 | 0.451 | 0.467 | 0.558 | 0.651 | 0.698 | |
72 | 0.064 | 0.133 | 0.187 | 0.208 | 0.244 | 0.375 | 0.499 | 0.653 |
[1] | WANG C X, YOU X H, Gao X Q, et al. On the Road to 6G:Visions,Requirements,Key Technologies and Testbeds[J]. IEEE Communications Surveys & Tutorials, 2023, 25(2):905-974. |
[2] | THEODOROPOULOS T, MAROUDIS A C, VIOLOS J, et al. An Encoder-Decoder Deep Learning Approach for Multistep Service Traffic Prediction[C]// IEEE Seventh International Conference on Big Data Computing Service and Applications(BigDataService 2021).Piscataway:IEEE, 2021:33-40. |
[3] | TIAN Z. Chaotic Characteristic Analysis of Network Traffic Time Series At Different Time Scales[J]. Chaos,Solitons & Fractals, 2020, 130:109412. |
[4] | KO T, RAZA S M, BINH D T, et al. Network Prediction with Traffic Gradient Classification Using Convolutional Neural Networks[C]// Proceedings of the 14th International Conference on Ubiquitous Information Management and Communication(IMCOM 2020).Piscataway:IEEE, 2020:1-4. |
[5] | 杜秀丽, 陶帆, 范志宇, 等. 面向骨干网流量的非线性组合预测方法[J]. 小型微型计算机系统. 2023, 44(2):408-412. |
DU Xiuli, TAO Fan, FAN Zhiyu, et al. Nonlinear Combination Prediction Method for Backbone Network Traffic[J]. Journal of Miniature Microcomputer Systems, 2023, 44(2):408-412. | |
[6] | 管业鹏, 苏光耀, 盛怡. 双向长短期记忆网络的时间序列预测方法[J]. 西安电子科技大学学报, 2024, 51(3):103-112. |
GUAN Yepeng, SU Guangyao, SHENG Yi. Time Series Prediction Method Based on the Bidirectional Long Short-Term Memory Network[J]. Journal of Xidian University, 2024, 51(3):103-112. | |
[7] | 张可涵, 李红艳, 刘文慧, 等. 面向流量预测的时间相关图卷积网络构建方法[J]. 西安电子科技大学学报, 2023, 50(5):11-20. |
ZHANG Kehan, LI Hongyan, LIU Wenhui, et al. Construction Method of Temporal Correlation Graph Convolution Network for Traffic Prediction[J]. Journal of Xidian University, 2023, 50(5):11-20. | |
[8] | 王跃文, 常琳, 李鸣. 基于深度学习的矿井无线网络流量长期预测研究[J]. 煤矿安全, 2021, 52(12):153-158+164. |
WANG Yuewen, CHANG Lin, LI Ming. Research on Long-Term Prediction of Mine Wireless Network Traffic Based on Deep Learning[J]. Coal Mine Safety, 2021, 52(12):153-158+164. | |
[9] | BI J, ZHANG X, YUAN H, et al. A Hybrid Prediction Method for Realistic Network Traffic with Temporal Convolutional Network and LSTM[J]. IEEE Transactions on Automation Science and Engineering, 2021, 19(3):1869-1879. |
[10] | KONG Q, ZHANG X, ZHANG C, et al. Network Traffic Prediction:Apply the Transformer to Time Series Forecasting[J]. Mathematical Problems in Engineering, 2022, 2022(1):8424398. |
[11] | WU H, HU T, LIU Y, et al. Timesnet:Temporal 2d-Variation Modeling for General Time Series Analysis[C]// The 11th International Conference on Learning Representations(ICLR 2023).Appleton:ICLR, 2023:1-23. |
[12] | KE G, CHEN R S, JI S, et al. Network Traffic Prediction Based on Least Squares Support Vector Machine with Simple Estimation of Gaussian Kernel Width[J]. International Journal of Information and Computer Security, 2022, 18(1-2):1-11. |
[13] | MARIET Z, KUZNETSOV V. Foundations of Sequence-to-Sequence Modeling for Time Series[C]// The 22nd International Conference on Artificial Intelligence and Statistics(AISTATS 2019). Cambridge MA: PMLR, 2019:408-417. |
[14] | SHENG S, LIN K, ZHOU Y, et al. Exploring a Multi-Output Temporal Convolutional Network Driven Encoder-Decoder Framework for Ammonia Nitrogen Forecasting[J]. Journal of Environmental Management, 2023, 342:118232. |
[15] | 李浩阳, 贺小伟, 王宾, 等. 基于改进Informer的云计算资源负载预测[J]. 计算机工程, 2024, 50(02):43-50. |
LI Haoyang, HE Xiaowei, WANG Bin, et al. Cloud Computing Resource Load Prediction Based on Improved Informer[J]. Computer Engineering, 2024, 50(02):43-50. | |
[16] | 葛云峰, 李红艳, 史可懿. 一种自注意力序列模型的视频流长期预测方法[J]. 西安电子科技大学学报, 2024, 51(3):88-102. |
GE Yunfeng, LI Hongyan, SHI Keyi. A Self-Attention Sequential Model for Long-Term Prediction of Video Streams[J]. Journal of Xidian University, 2024, 51(3):88-102. | |
[17] | LI M. Long-Range Dependence and Self-Similarity of Teletraffic with Different Protocols at the Large Time Scale of Day in the Duration of 12 Years:Autocorrelation Modeling[J]. Physica Scripta, 2020, 95(6):065222. |
[18] | DU S, LI T, YANG Y, et al. An LSTM Based Encoder-Decoder Model forMultiStep Traffic Flow Prediction[C]// The 33th International Joint Conference on Neural Networks(IJCNN 2019).Piscataway:IEEE, 2019:1-8. |
[19] | 陈立国, 张跃冬, 耿光刚, 等. 基于GRU型循环神经网络的随机域名检测[J]. 计算机系统应用, 2018, 27(08):198-202. |
CHEN Liguo, ZHANG Yuedong, GENG Guanggang, et al. Detection of Random Domain Names Based on GRU Type Recurrent Neural Network[J]. Computer Systems Applications, 2018, 27(08):198-202. | |
[20] | 陈宇聪, 白晓清. 考虑时序二维变化的日前市场电价预测模型[J]. 电力系统及其自动化学报, 2024, 36(07):22-29.. |
CHEN Yucong, BAI Xiaoqing. Day-ahead Market Electricity Price Prediction Model Considering Temporal Two-Dimensional Variation[J]. Journal of Power Systems and Its Automation, 2024, 36(07):22-29. | |
[21] | LIU Z, MAO H, WU C Y, et al. A Convnet for the 2020s[C]// Proceedings ofthe 35th IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR 2022). Piscataway:IEEE, 2022:11966-11976. |
[22] | SZEGEDY C, LIU W, JIA Y, et al. Going Deeper with Convolutions[C]// Proceedings ofthe 28th IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2015).Piscataway:IEEE, 2015:1-9. |
[23] | 赵仲瑜, 唐伟忠, 张文辉, 等. 基于YOLOv5的铁路接触网异物检测模型初步研究[J]. 铁路计算机应用, 2024, 33(02):13-18. |
ZHAO Zhongyu, TANG Weizhong, ZHANG Wenhui, et al. Preliminary Study on the Model of Railway Catenary Foreign Object Detection Based on YOLOv5[J]. Railway Computer Application, 2024, 33(02):13-18. | |
[24] | 张碧川, 刘卫东, 米浩, 等. 基于轻量化YOLOv8的安全帽检测[J]. 电脑与电信, 2024,(Z1):35-39. |
ZHANG Bichuan, LIU Weidong, MI Hao, et al. Safety Helmet Detection Based on Lightweight YOLOv8[J]. Computer & Telecommunication, 2024,(Z1):35-39. | |
[25] | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet Classification with Deep Convolutional Neural Networks[C]// Proceedings of the 26th Advances in Neural Information Processing Systems(NeurIPS 2012).CA:NeurIPS, 2012:1097-1105. |
[26] | SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-Scale Image Recognition[C]// Proceedings ofthe 3rd International Conference on Learning Representations(ICLR 2015).Appleton:ICLR, 2015:1-14. |
[27] | SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the Inception Architecture for Computer Vision[C]// Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2016).Piscataway:IEEE, 2016:2818-2826. |
[28] | HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2016).Piscataway:IEEE, 2016:770-778. |
[29] | HUANG G, LIU Z, VAN DER MAATEN L, et al. Densely Connected Convolutional Networks[C]// Proceedings ofthe 30th IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2017).Piscataway:IEEE, 2017:4700-4708. |
[30] | HOWARD A G, ZHU M, CHEN B, et al. Mobilenets:Efficient Convolutional Neural Networks for Mobile Vision Applications[EB/OL].[2024-4-3]. https://arxiv.org/abs/1704.04861. |
[31] | TAN M, LE Q. Efficientnet:Rethinking Model Scaling for Convolutional Neural Networks[C]// 33th International Conference on Machine Learning(ICML2016). Cambridge MA: PMLR, 2019:6105-6114. |
[32] | ZAFAR N, HAQ I U, CHUGHTAI J R, et al. Applying Hybrid LSTM-GRU Model Based on Heterogeneous Data Sources for Traffic Speed Prediction in Urban Areas[J]. Sensors, 2022, 22(9):3348. |
[33] | WACZYNSKA J, MARTELLI E, VALLECORSA S, et al. Convolutional LSTM Models to Estimate Network Traffic[C]// 25th International Conference on Computing in High Energy and Nuclear Physics(CHEP 2021). France: EDP Sciences, 2021, 251:02050. |
[34] | ZHOU T, MA Z, WEN Q, et al. Fedformer:Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting[C]// Proceedings of the 39th International Conference on Machine Learning(ICML 2022). Cambridge MA: PMLR, 2022:27268-27286. |
[35] | ZENG A, CHEN M, ZHANG L, et al. Are Transformers Effective for Time Series Forecasting?[C]// Proceedings of the 37th AAAI Conference on Artificial Intelligence(AAAI 2023). Menlo Park: AAAI, 2023:11121-11128. |
[1] | 王潮, 蒋晓锋, 王苏敏. 面向直觉推理的量子效应交通预测算法研究[J]. 西安电子科技大学学报, 2025, 52(1): 152-162. |
[2] | 孙志, 王冠. 自监督对比学习的CNN-GRU语音情感识别算法[J]. 西安电子科技大学学报, 2024, 51(6): 182-193. |
[3] | 蔡固顺, 刘锦辉, 张馨丹, 黄钊, 王泉. 基于PINN的非线性电路直流工作点求解方法[J]. 西安电子科技大学学报, 2024, 51(6): 91-103. |
[4] | 杨泽琳, 董丽华, 曾勇. 对减轮Enhanced-Bivium流密码的立方攻击[J]. 西安电子科技大学学报, 2024, 51(5): 179-188. |
[5] | 万梦依, 武燕. 一种新的基于预测的动态多目标进化算法[J]. 西安电子科技大学学报, 2024, 51(3): 124-135. |
[6] | 贺王鹏, 胡德顺, 李诚, 周悦, 郭宝龙. 结合模板更新与轨迹预测的孪生网络跟踪算法[J]. 西安电子科技大学学报, 2024, 51(3): 46-54. |
[7] | 葛云峰, 李红艳, 史可懿. 一种自注意力序列模型的视频流长期预测方法[J]. 西安电子科技大学学报, 2024, 51(3): 88-102. |
[8] | 陈永, 蒋丰源. 注意力去噪与复数LSTM的时变信道预测算法[J]. 西安电子科技大学学报, 2024, 51(1): 29-40. |
[9] | 张可涵,李红艳,刘文慧,王鹏. 面向流量预测的时间相关图卷积网络构建方法[J]. 西安电子科技大学学报, 2023, 50(5): 11-20. |
[10] | 侯越,郑鑫,韩成艳. 一种融合纵横时空特征的交通流预测方法[J]. 西安电子科技大学学报, 2023, 50(5): 65-74. |
[11] | 蔡国庆,刘玲,张冲,周一青. 基于GNN-LSTM-CNN网络的6G车辆轨迹预测算法[J]. 西安电子科技大学学报, 2023, 50(3): 50-60. |
[12] | 刘惠,董锡耀,杨志涵. 融合Stacking框架的BiGRU-LGB云负载预测模型[J]. 西安电子科技大学学报, 2023, 50(3): 83-94. |
[13] | 甘萍, 农丽萍, 张文辉, 林基明, 王俊义. 一种用于交通预测的注意力时空图神经网络[J]. 西安电子科技大学学报, 2023, 50(1): 168-176. |
[14] | 陈永,牛凯玉,康婕. LSTM循环神经网络的高速铁路越区切换算法[J]. 西安电子科技大学学报, 2023, 50(1): 76-84. |
[15] | 平续斌,刘思伟,吴宗原,刘鼎,李志武. 准最小最大优化动态输出反馈鲁棒MPC[J]. 西安电子科技大学学报, 2022, 49(6): 164-176. |
|