西安电子科技大学学报 ›› 2025, Vol. 52 ›› Issue (1): 37-49.doi: 10.19665/j.issn1001-2400.20241015

• 信息与通信工程 • 上一篇    下一篇

基于SLSTM网络的两级修正机动目标跟踪方法

汪晋1,2(), 苏洪涛1(), 汪圣利2(), 陆超2()   

  1. 1.西安电子科技大学 雷达信号处理全国重点实验室,陕西 西安 710071
    2.南京电子技术研究所,江苏 南京 210039
  • 收稿日期:2024-04-16 出版日期:2024-11-27 发布日期:2024-11-27
  • 通讯作者: 苏洪涛(1974—),男,教授,E-mail:suht@xidian.edu.cn
  • 作者简介:汪 晋(1985—),男,博士研究生,研究员,E-mail:wjkbf1926@sina.com
    汪圣利(1977—),男,研究员,E-mail:slwangbb@163.com
    陆 超(1999—),男,工程师,E-mail:lc_yizhiyi@163.com
  • 基金资助:
    国家自然科学基金(62201418);国家自然科学基金(62192714)

Two-level modified maneuvering target tracking method based on the SLSTM network

WANG Jin1,2(), SU Hongtao1(), WANG Shengli2(), LU Chao2()   

  1. 1. National Key Laboratory of Radar Signal Processing,Xidian University,Xi’an 710071,China
    2. Nanjing Research Institute of Electronics Technology,Nanjing 210039,China
  • Received:2024-04-16 Online:2024-11-27 Published:2024-11-27

摘要:

传统机动目标跟踪方法在机动模型建模方面,通过模型集自适应交互的方式,实现模型与目标真实运动的匹配。在跟踪非合作目标时,由于机动状态随时变化,且机动形式多样,当模型集内的有限个模型均无法精准表征其真实运动时,跟踪性能下降。将模型修正和状态修正两级神经网络融入到滤波递推过程中,提出一种基于堆叠长短时记忆(Stacked Long Short-Term Memory,SLSTM)网络的两级修正机动目标跟踪方法(Two Level Modified Maneuvering Target Tracking,TLM-MTT),第一级模型修正网络实时感知目标的机动,调整模型参数,实现机动模型的精准建模,第二级状态修正网络对状态估计进行实时补偿,提升滤波输出的精度。通过离线方式进行网络训练,训练后的网络用于在线实时跟踪,相较于传统方法和其他智能化滤波方法,文中所提方法对高机动目标跟踪具有更好的跟踪性能。

关键词: 目标跟踪, 长短时记忆网络, 卡尔曼滤波

Abstract:

In terms of maneuver model modeling,traditional maneuvering target tracking methods achieve matching between the model and the real motion of the target through adaptive interaction of the model set.When tracking non-cooperative targets,the maneuvering state changes at any time and the maneuvering forms are diverse.When the limited models in the model set cannot accurately represent its real motion,the tracking performance will degrade.This paper integrates the two level neural network of model correction and state correction into the filtering recursion process,and proposes a two-level modified maneuvering target tracking method(TLM-MTT) based on the stacked long short-term memory(SLSTM) network.The first-level model correction network perceives the maneuver of the target in real time,adjusts the model parameters,and realizes accurate modeling of the maneuver model.The second-level state correction network compensates the state estimation in real time to improve the accuracy of the filter output.The network is trained offline,and the trained network is used for online real-time tracking.Compared with traditional methods and other intelligent filtering methods,this method has a better tracking performance for high-maneuvering target tracking.

Key words: target tracking, long short-term memory(LSTM), kalman filter

中图分类号: 

  • TN957.52