西安电子科技大学学报 ›› 2025, Vol. 52 ›› Issue (1): 163-180.doi: 10.19665/j.issn1001-2400.20241101
收稿日期:
2024-05-11
出版日期:
2024-11-19
发布日期:
2024-11-19
通讯作者:
宋 彬(1973—),男,教授,E-mail:bsong@mail.xidian.edu.cn作者简介:
陈 宸(1996—),男,西安电子科技大学博士研究生,E-mail:chenchen_123@stu.xidian.edu.cn;基金资助:
CHEN Chen(), CHENG Rong(
), SONG Bin(
)
Received:
2024-05-11
Online:
2024-11-19
Published:
2024-11-19
摘要:
知识图谱(KG)在挖掘推荐场景中项目之间高阶关系方面逐渐成为一项重要趋势。尽管一些基于知识图谱的模型,如知识图注意网络(KGAT),能够有效建模一阶关系,但它们面临着无法对高阶关系中的协作信息进行建模的挑战。此外,现有的基于知识图谱的模型将交互行为简化为一种知识图谱关系,直接将用户-项目二分图与知识图融合成为一个整合图,却忽略了图结构之间的异构性,导致无法充分保留图内特定属性。在这项研究中,深入分析了交互行为和关系链接之间的潜在差异与联系,并提出了一种名为异构图信息协同过滤(HGICF)的创新消息传播机制。该机制能够将用户-项目行为和知识图谱辅助信息的协作特征有效传播到一个综合的模型中。这一解决方案不仅维持了图内属性的依赖关系,而且有助于跨图信息的有效聚合。为了深刻理解知识图谱和二部图之间的协作关系,进一步提出了共享特征协同过滤层,该层能够根据不同的数据结构和需求设置不同的层级。实验结果表明,HGICF在性能上显著优于当前方法。
中图分类号:
陈宸, 成蓉, 宋彬. 端到端异构图信息协同过滤推荐[J]. 西安电子科技大学学报, 2025, 52(1): 163-180.
CHEN Chen, CHENG Rong, SONG Bin. End-to-end heterogeneous graph information collaborative filtering for recommendation[J]. Journal of Xidian University, 2025, 52(1): 163-180.
表3
不同模型在不同推荐数据上的推荐性能比较"
Last-FM | Yelp2018 | Amazon-book | Amazon-book-part | |||||
---|---|---|---|---|---|---|---|---|
Recall | NDCG | Recall | NDCG | Recall | NDCG | Recall | NDCG | |
FM | 0.077 8 | 0.118 1 | 0.062 7 | 0.076 8 | 0.134 5 | 0.088 6 | 0.144 8 | 0.098 3 |
NFM | 0.082 9 | 0.121 4 | 0.066 0 | 0.081 0 | 0.136 6 | 0.091 3 | 0.131 0 | 0.090 1 |
NCF | 0.061 5 | 0.136 5 | 0.060 9 | 0.051 7 | 0.134 3 | 0.087 0 | 0.133 7 | 0.090 6 |
NGCF | 0.067 2 | 0.140 8 | 0.062 3 | 0.052 1 | 0.142 8 | 0.089 7 | 0.139 3 | 0.093 4 |
LightGCN | 0.063 6 | 0.052 7 | 0.150 3 | 0.093 4 | 0.146 6 | 0.096 3 | ||
DMGCF | 0.070 1 | 0.142 4 | 0.063 3 | 0.060 3 | 0.146 8 | 0.092 3 | 0.140 4 | 0.096 1 |
CKE | 0.073 6 | 0.118 4 | 0.065 7 | 0.080 5 | 0.134 3 | 0.088 5 | 0.132 9 | 0.089 9 |
CFKG | 0.072 3 | 0.114 3 | 0.052 2 | 0.064 4 | 0.114 2 | 0.077 0 | 0.116 2 | 0.078 4 |
KGIN | 0.091 0 | 0.140 6 | 0.070 5 | 0.086 4 | 0.150 0 | 0.101 7 | 0.148 9 | 0.101 0 |
KGAT | 0.088 2 | 0.136 6 | 0.071 2 | 0.086 7 | 0.149 7 | 0.101 9 | 0.149 3 | 0.101 2 |
HGICF | 0.092 8 | 0.143 6 | 0.073 4 | 0.088 8 | 0.152 0 | 0.103 1 | 0.151 6 | 0.102 9 |
%improv. | 1.93% | 2.10% | 3.09% | 2.42% | 1.54% | 1.18% | 1.54% | 1.68% |
[1] | 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7):1619-1647. |
HUANG Liwei, JIANG Bitao, LV Shouye, et al. A Review of Research on Recommendation Systems Based on Deep Learning[J]. Chinese Journal of Computers, 2018, 41(7):1619-1647. | |
[2] | DAI S, SHAO N, ZHAO H, et al. Uncovering CHATGPT’S Capabilities in Recommender Systems[C]// Proceedings of the 17th ACM Conference on Recommender Systems. New York: ACM, 2023:1126-1132. |
[3] | JIN D, WANG L, ZHANG H, et al. A Survey on Fairness-Aware Recommender Systems[J]. Information Fusion, 2023, 100:101906. |
[4] | RAJPUT S, MEHTA N, SINGH A, et al. Recommender Systems with Generative Retrieval[J]. Advances in Neural Information Processing Systems, 2024, 36:10299-10315. |
[5] | WANG Y, MA W, ZHANG M, et al. A Survey on the Fairness of Recommender Systems[J]. ACM Transactions on Information Systems, 2023, 41(3):1-43. |
[6] | 黄河源, 慕彩红, 方云飞, 等. 使用图负采样的图卷积神经网络推荐算法[J]. 西安电子科技大学学报, 2024, 51(1):86-99. |
HUANG Heyuan, MU Caihong, FANG Yunfei, et al. Graph Convolution Neural Network for Recommendation Using Graph Negative Sampling[J]. Journal of Xidian University, 2024, 51(1):86-99. | |
[7] | YAO F, LI C, SANKARARAMAN K A, et al. Rethinking Incentives in Recommender Systems:Are Monotone Rewards Always Beneficial?[J]. Advances in Neural Information Processing Systems, 2024:36. |
[8] | 邓爱林, 朱扬勇, 施伯乐. 基于项目评分预测的协同过滤推荐算法[J]. 软件学报, 2003, 14(9):1621-1628. |
DENG Ailin, ZHU Yangyong, SHI Bole. Collaborative Filtering Recommendation Algorithm Based on Item Score Prediction[J]. Journal of Software, 2003, 14(9):1621-1628. | |
[9] | KUO R J, LI S S. Applying Particle Swarm Optimization Algorithm-Based Collaborative Filtering Recommender System Considering Rating and Review[J]. Applied Soft Computing, 2023, 135:110038. |
[10] | REN X, XIA L, ZHAO J, et al. Disentangled Contrastive Collaborative Filtering[C]// Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023:1137-1146. |
[11] | ZHANG Y, ZHU H, SONG Z, et al. Mitigating the Popularity Bias of Graph Collaborative Filtering:A Dimensional Collapse Perspective[J]. Advances in Neural Information Processing Systems, 2023, 36:67533-67550. |
[12] | SUN P, WU L, ZHANG K, et al. Neighborhood-Enhanced Supervised Contrastive Learning for Collaborative Filtering[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 36(5):2069-2081. |
[13] | YING R, HE R, CHEN K, et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2018:974-983. |
[14] | YANG J H, CHEN C M, WANG C J, et al. HOP-Rec:High-Order Proximity for Implicit Recommendation[C]// Proceedings of the 12th ACM Conference on Recommender Systems. New York: ACM, 2018:140-144. |
[15] | WANG X, He X, WANG M, et al. Neural Graph Collaborative Filtering[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019:165-174. |
[16] | BERG R, KIPF T N, WELLING M. Graph Convolutional Matrix Completion(2017)[J/OL].[20217-10-25]. https://arxiv.org/abs/1706.02263. |
[17] | LI X, SUN L, LING M, et al. A Survey of Graph Neural Network Based Recommendation in Social Networks[J]. Neurocomputing, 2023, 549:126441. |
[18] | SHENG Z, ZHANG T, ZHANG Y, et al. Enhanced Graph Neural Network for Session-Based Recommendation[J]. Expert Systems with Applications, 2023, 213:118887. |
[19] | HUANG J, XIE R, CAO Q, et al. Negative can be Positive:Signed Graph Neural Networks for Recommendation[J]. Information Processing & Management, 2023, 60(4):103403. |
[20] | CAI D, QIAN S, FANG Q, et al. User Cold-Start Recommendation via Inductive Heterogeneous Graph Neural Network[J]. ACM Transactions on Information Systems, 2023, 41(3):1-27. |
[21] | SHEN Q, ZHU S, PANG Y, et al. Temporal Aware Multi-Interest Graph Neural Network for Session-Based Recommendation[C]//Asian Conference on Machine Learning. Stroudsburg:PMLR, 2023:189. |
[22] | WANG X, HE X, CAO Y, et al. KGAT:Knowledge Graph Attention Network for Recommendation[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2019:950-958. |
[23] | ZHANG F, YUAN N J, LIAN D, et al. Collaborative Knowledge Base Embedding for Recommender Systems[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York: ACM, 2016:353-362. |
[24] | BORDES A, USUNIER N, GARCIA-DURAN A, et al. Translating Embeddings forModeling Multi-Relational Data[J]. Advances in Neural Information Processing Systems, 2013, 26:2787-2795. |
[25] | KIPF T N, WELLING M. Semi-Supervised Classification with Graph Convolutional Networks(2016)[J/OL].[2017-02-22]. https://arxiv.org/abs/1609.02907. |
[26] | KIPF T N, WELLING M. Variational Graph Auto-Encoders(2016)[J/OL].[2016-11-21]. https://arxiv.org/abs/1611.07308. |
[27] | DWIVEDI V P, JOSHI C K, LUU A T, et al. Benchmarking Graph Neural Networks[J]. Journal of Machine Learning Research, 2023, 24(43):1-48. |
[28] | HE X, DENG K, WANG X, et al. Lightgcn:Simplifying and Powering Graph Convolution Network for Recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020:639-648. |
[29] | LIU F, CHENG Z, ZHU L, et al. An Attribute-Aware Attentive GCN Model for Attribute Missing in Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(9):4077-4088. |
[30] | ZHANG H, MCAULEY J. Stacked Mixed-Order Graph Convolutional Networks for Collaborative Filtering[C]//Proceedings of the 2020 SIAM International Conference on Data Mining. Philadelphia:SIAM, 2020:73-81. |
[31] | LIU F, CHENG Z, ZHU L, et al. Interest-Aware Message-Passing GCN for Recommendation[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021:1296-1305. |
[32] | WANG X, HUANG T, WANG D, et al. Learning Intents Behind Interactions with Knowledge Graph for Recommendation[C]// Proceedings of the Web Conference 2021. New York: ACM, 2021:878-887. |
[33] | WU S, TANG Y, ZHU Y, et al. Session-Based Recommendation with Graph Neural Networks[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2019, 33:346-353. |
[34] | XU C, ZHAO P, LIU Y, et al. Graph Contextualized Self-Attention Network for Session-Based Recommendation[C]// IJCAI. New York: ACM, 2019, 19:3940-3946. |
[35] | QIU R, LI J, HUANG Z, et al. Rethinking the Item Order in Session-Based Recommendation with Graph Neural Networks[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019:579-588. |
[36] | CHEN C, GUO J, SONG B. Dual Attention Transfer in Session-Based Recommendation with Multi-Dimensional Integration[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2021:869-878. |
[37] | PENG C, XIA F, NASERIPARSA M, et al. Knowledge Graphs:Opportunities and Challenges[J]. Artificial Intelligence Review, 2023, 56(11):13071-13102. |
[38] | LIANG K, MENG L, LIU M, et al. A Survey of Knowledge Graph Reasoning on Graph Types:Static,Dynamic,and Multi-Modal[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12):9456-9478. |
[39] | LIN Y, LIU Z, SUN M, et al. Learning Entity and Relation Embeddings for Knowledge Graph Completion[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2015, 29:2181-2187. |
[40] | BELL R M, KOREN Y. Lessons from the Netflix Prize Challenge[J]. ACM SIGKDD Explorations Newsletter, 2007, 9(2):75-79. |
[41] | WANG H, ZHANG F, WANG J, et al. Ripplenet:Propagating User Preferences on The Knowledge Graph for Recommender Systems[C]// Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018:417-426. |
[42] | WANG Z, LIN G, TAN H, et al. CKAN:Collaborative Knowledge-aware Attentive Network for Recommender Systems[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020:219-228. |
[43] | AI Q, AZIZI V, CHEN X, et al. Learning Heterogeneous Knowledge Base Embeddings for Explainable Recommendation[J]. Algorithms, 2018, 11(9):137. |
[44] | WANG Z, ZHANG J, FENG J, et al. Knowledge Graph Embedding by Translating on Hyperplanes[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2014, 28:1112-1119. |
[45] | CAO Y, WANG X, HE X, et al. Unifying Knowledge Graph Learning and Recommendation:Towards A Better Understanding of User Preferences[C]// TheWorld Wide Web Conference. New York: ACM, 2019:151-161. |
[46] | DETTMERS T, MINERVINI P, STENETORP P, et al. Convolutional 2d Knowledge Graph Embeddings[C]// Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2018, 32:1811-1818. |
[47] | NGUYEN T D, NGUYEN D Q, PHUNG D. A Novel Embedding Model for Knowledge Base Completion Based on Convolutional Neural Network[C]//North American Association for Computational Linguistics 2018. Stroudsburg:ACL, 2018:327-333. |
[48] | WANG H, ZHANG F, ZHAO M, et al. Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation[C]// The World Wide Web Conference. New York: ACM, 2019:2000-2010. |
[49] | SCHLICHTKRULL M, KIPF T N, BLOEM P, et al. Modeling Relational Data with Graph Convolutional Networks[C]// The Semantic Web:15th International Conference,ESWC 2018.Berlin:Springer, 2018:593-607. |
[50] | HAMILTON W, YING Z, LESKOVEC J. Inductive Representation Learning on Large Graphs[J]. Advances inNeural Information Processing Systems, 2017, 30:1025-1035. |
[51] | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR:Bayesian Personalized Ranking from Implicit Feedback(2012)[C/OL].[2012-05-09]. https://arxiv.org/abs/1205.2618. |
[52] | RENDLE S, GANTNER Z, FREUDENTHALER C, et al. Fast Context-Aware Recommendations with Factorization Machines[C]// Proceedings of the 34th international ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2011:635-644. |
[53] | HE X, CHUA T S. Neural Factorization Machines for Sparse Predictive Analytics[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2017:355-364. |
[54] | HE X, LIAO L, ZHANG H, et al. Neural Collaborative Filtering[C]// Proceedings of the 26th International Conference on World Wide Web. New York: ACM, 2017:173-182. |
[55] | TANG H, ZHAO G, BU X, et al. Dynamic Evolution of Multi-Graph Based Collaborative Filtering for Recommendation Systems[J]. Knowledge-Based Systems, 2021, 228:107251. |
[56] | GLOROT X, BENGIO Y. Understandingthe Difficulty of Training Deep Feedforward Neural Networks[C]// Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. New York: JMLR, 2010:249-256. |
[57] | KINGMA D P, BA J. Adam:A Method for Stochastic Optimization(2014)[J/OL].[2017-01-30]. https://arxiv.org/abs/1412.6980?file=1412.6980. |
[1] | 王雨来, 廖晓闽, 何海光, 叶国军. 知识图谱辅助的无人机群频谱资源优化算法[J]. 西安电子科技大学学报, 2024, 51(5): 58-70. |
[2] | 陈可嘉, 张雨鹏, 林鸿熙. 句法感知与知识增强的方面级情感分析[J]. 西安电子科技大学学报, 2024, 51(5): 165-178. |
[3] | 李小涵, 杨颜博, 张嘉伟, 李宝山, 马建峰. 面向以太坊智能合约的图神经网络漏洞检测[J]. 西安电子科技大学学报, 2024, 51(4): 139-150. |
[4] | 黄河源, 慕彩红, 方云飞, 刘逸. 使用图负采样的图卷积神经网络推荐算法[J]. 西安电子科技大学学报, 2024, 51(1): 86-99. |
[5] | 史慧洋,魏靖烜,蔡兴业,王鹤,高随祥,张玉清. 威胁情报提取与知识图谱构建技术研究[J]. 西安电子科技大学学报, 2023, 50(4): 65-75. |
[6] | 董勐,高一鸣,潘伟涛,邱智亮,杨建磊,邸志雄,郑凌. RELIC-GNN:一种高效的状态寄存器识别算法[J]. 西安电子科技大学学报, 2023, 50(3): 142-150. |
[7] | 张泽欢, 刘强, 国狄非. 面向大规模零样本图像识别的高效算法框架[J]. 西安电子科技大学学报, 2022, 49(6): 103-110. |
[8] | 史加荣,李金红. 新型深度矩阵分解及其在推荐系统中的应用[J]. 西安电子科技大学学报, 2022, 49(3): 171-182. |
[9] | 胡代旺,焦一源,李雁妮. 一种新型高效的文库知识图谱实体关系抽取算法[J]. 西安电子科技大学学报, 2021, 48(6): 75-83. |
[10] | 吕文凯,杨鹏飞,丁韵青,张鹤于,郑天洋. JEDERL:一种异构计算平台任务调度优化算法[J]. 西安电子科技大学学报, 2021, 48(6): 67-74. |
[11] | 韩亚敏;柴争义;李亚伦;朱思峰. 长尾群组推荐的免疫多目标优化实现[J]. 西安电子科技大学学报, 2018, 45(3): 109-116. |
[12] | 孙宏元1;2;谢维信2;陆克中2;杨勋1. 一种新的视界覆盖遗传算法 [J]. J4, 2007, 34(5): 758-762. |
[13] | 李媛媛1;许录平1;2. 用于矢量地图版权保护的数字水印[J]. J4, 2004, 31(5): 719-723. |
[14] | 詹海生;李广鑫;周利华. 基于单纯复形的矢量地图多分辨率表示方法[J]. J4, 2003, 30(5): 682-688. |
|