[1] |
FERTIG L B, BADEN M J, KERCE J C, et al. Localization and Tracking with Multipath Exploitation Radar[C]//2012 IEEE Radar Conference. Piscataway:IEEE, 2012:1014-1018.
|
[2] |
MARTONE A F, RANNEY K, LE C. Noncoherent Approach for Through-the-Wall Moving Target Indication[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1):193-206.
|
[3] |
SMITH G E, MOBASSERI B G. MultipathExploitation for Radar Target Classification[C]//2012 IEEE Radar Conference. Piscataway:IEEE, 2012:0623-0628.
|
[4] |
DEBES C, RIEDLER J, ZOUBIR A M, et al. Adaptive Target Detection with Application to Through-the-Wall Radar Imaging[J]. IEEE Transactions on Signal Processing, 2010, 58(11):5572-5583.
|
[5] |
欧渝. 基于多径利用的MIMO毫米波雷达非视距目标探测方法[D]. 成都: 电子科技大学, 2023.
|
[6] |
LINNEHAN R, SCHINDLER J. Multistatic Scattering from Moving Targets in Multipath Environments[C]//2009 IEEE Radar Conference. Piscataway:IEEE, 2009:1-6.
|
[7] |
NOUVEL J F, LESTURGIE M. Study of NLOS Detection over Urban Area at Ka Band Through Multipath Exploitation[C]//2014 International Radar Conference. Piscataway:IEEE, 2014:1-5.
|
[8] |
NOUVEL J F, VAIZAN B, RUAULT DU PLESSIS O, et al. Ka Band Measurements over Urban Area,A Study of NLOS Back-Scattering[C]//2012 IEEE International Geoscience and Remote Sensing Symposium. Piscataway:IEEE, 2012:3615-3618.
|
[9] |
TAHMOUSH D, SILVIOUS J, BENDER B. RadarSurveillance in Urban Environments[C]//2012 IEEE Radar Conference. Piscataway:IEEE, 2012:0220-0225.
|
[10] |
孔令讲, 郭世盛, 陈家辉, 等. 多径利用雷达目标探测技术综述与展望[J]. 雷达学报(中英文), 2024, 13(1):23-45.
|
|
KONG Lingjiang, GUO Shisheng, CHEN Jiahui, et al. Overview and Prospects of Multipath Exploitation Radar Target Detection Technology[J]. Journal of Radars, 2024, 13(1):23-45.
|
[11] |
WU Q, ZHANG R. Towards Smart and Reconfigurable Environment:Intelligent Reflecting Surface Aided Wireless Network[J]. IEEE Communications Magazine, 2020, 58(1):106-112.
|
[12] |
HAN Y, TANG W, JIN S, et al. Large Intelligent Surface-Assisted Wireless Communication Exploiting Statistical CSI[J]. IEEE Transactions on Vehicular Technology, 2019, 68(8):8238-8242.
|
[13] |
ZHANG S, ZHANG R. Capacity Characterization for Intelligent Reflecting Surface Aided MIMO Communication[J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8):1823-1838.
|
[14] |
BASAR E, DI RENZO M, DE ROSNY J, et al. Wireless Communications Through Reconfigurable Intelligent Surfaces[J]. IEEE Access, 2019, 7:116753-116773.
doi: 10.1109/ACCESS.2019.2935192
|
[15] |
LIU Y, LIU X, MU X, et al. Reconfigurable Intelligent Surfaces:Principles and Opportunities[J]. IEEE Communications Surveys & Tutorials, 2021, 23(3):1546-1577.
|
[16] |
ELMOSSALLAMY M A, ZHANG H, SONG L, et al. Reconfigurable Intelligent Surfaces for Wireless Communications:Principles,Challenges,and Opportunities[J]. IEEE Transactions on Cognitive Communications and Networking, 2020, 6(3):990-1002.
|
[17] |
WU Q, ZHANG S, ZHENG B, et al. Intelligent Reflecting Surface-Aided Wireless Communications:A Tutorial[J]. IEEE Transactions on Communications, 2021, 69(5):3313-3351.
|
[18] |
WU Q, ZHANG R. Intelligent Reflecting Surface Enhanced Wireless Network:Joint Active and Passive Beamforming Design[C]//2018 IEEE Global Communications Conference(GLOBECOM). Piscataway:IEEE, 2018:1-6.
|
[19] |
BJÖRNSON E, WYMEERSCH H, MATTHIESEN B, et al. Reconfigurable Intelligent Surfaces:A Signal Processing Perspective with Wireless Applications[J]. IEEE Signal Processing Magazine, 2022, 39(2):135-158.
|
[20] |
ZHANG S, ZHANG Y, DI B. Large-Scale Intelligent Surfaces Enabled Unified Near-Field and Far-Field Communications:Codebook Design and Beam Training[J]. IEEE Network, 2024:1-1.
|
[21] |
PRAKASH P, KASTHURI P, ARAVINDAN S M. Deep Learning Enhanced RIS Configuration for Urban Scenario[C]// 2024 2nd International Conference on Networking,Embedded and Wireless Systems(ICNEWS).Piscataway:IEEE, 2024:1-8.
|
[22] |
PAN C, ZHOU G, ZHI K, et al. An Overview of Signal Processing Techniques for RIS/IRS-aided Wireless Systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5):883-917.
|
[23] |
HE Y, CAI Y, MAO H, et al. RIS-Assisted Communication Radar Coexistence:Joint Beamforming Design and Analysis[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(7):2131-2145.
|
[24] |
LIU R, LI M, LIU Y, et al. Joint Transmit Waveform and Passive Beamforming Design for RIS-Aided DFRC Systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2022, 16(5):995-1010.
|
[25] |
CHEN Z, YE J, HUANG L. A Two-Stage Beamforming Design for Active RIS Aided Dual Functional Radar and Communication[C]//2023 IEEE Wireless Communications and Networking Conference(WCNC). Piscataway:IEEE, 2023:1-6.
|
[26] |
YAN S, CAI S, XIA W, et al. A Reconfigurable Intelligent Surface Aided Dual-Function Radar and Communication System[C]// 2022 2nd IEEE International Symposium on Joint Communications & Sensing(JC&S).Piscataway:IEEE, 2022:1-6.
|
[27] |
ZHANG L, LEI X, MA T, et al. Joint User Localization, Channel Estimation,and Pilot Optimization for RIS-ISAC[J]. IEEE Transactions on Wireless Communications, 2024:1-1.
|
[28] |
BUZZI S, GROSSI E, LOPS M, et al. Radar Target Detection Aided by Reconfigurable Intelligent Surfaces[J]. IEEE Signal Processing Letters, 2021, 28:1315-1319.
|
[29] |
LU W, DENG B, FANG Q, et al. Intelligent Reflecting Surface-Enhanced Target Detection in MIMO Radar[J]. IEEE Sensors Letters, 2021, 5(2):1-4.
|
[30] |
LU W, LIN Q, SONG N, et al. Target Detection in Intelligent Reflecting Surface Aided Distributed MIMO Radar Systems[J]. IEEE Sensors Letters, 2021, 5(3):1-4.
|
[31] |
BUZZI S, GROSSI E, LOPS M, et al. Foundations of MIMO Radar Detection Aided by Reconfigurable Intelligent Surfaces[J]. IEEE Transactions on Signal Processing, 2022, 70:1749-1763.
|
[32] |
AUBRY A, DE MAIO A, ROSAMILIA M. Reconfigurable Intelligent Surfaces for N-LOS Radar Surveillance[J]. IEEE Transactions on Vehicular Technology, 2021, 70(10):10735-10749.
|
[33] |
AUBRY A, DE MAIO A, ROSAMILIA M. RIS-Aided Radar Sensing in N-LOS Environment[C]// 2021 IEEE 8th International Workshop on Metrology for AeroSpace(MetroAeroSpace).Piscataway:IEEE, 2021:277-282.
|
[34] |
YE J, PENG Y, ZHANG P, et al. RIS-Assisted Radar NLOS Target Detection[C]// 2022 5th International Conference on Information Communication and Signal Processing(ICICSP).Piscataway:IEEE, 2022:630-635.
|
[35] |
TANG W, CHEN M Z, CHEN X, et al. Wireless Communications with Reconfigurable Intelligent Surface:Path Loss Modeling and Experimental Measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1):421-439.
|
[36] |
NAJAFI M, JAMALI V, SCHOBER R, et al. Physics-Based Modeling and Scalable Optimization of Large Intelligent Reflecting Surfaces[J]. IEEE Transactions on Communications, 2021, 69(4):2673-2691.
|
[37] |
ELLINGSON S W. Path Loss in Reconfigurable Intelligent Surface-Enabled Channels[C]// 2021 IEEE 32nd Annual International Symposium on Personal,Indoor and Mobile Radio Communications(PIMRC).Piscataway:IEEE, 2021:829-835.
|
[38] |
JAMALI V, TULINO A M, FISCHER G, et al. Intelligent Surface-Aided Transmitter Architectures for Millimeter-Wave Ultra Massive MIMO Systems[J]. IEEE Open Journal of the Communications Society, 2021, 2:144-167.
|
[39] |
KELLY E J. An Adaptive Detection Algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2):115-127.
|
[40] |
XIE Z, WU L, ZHU J, et al. RIS-Aided Radar for Target Detection:Clutter Region Analysis and Joint Active-Passive Design[J]. IEEE Transactions on Signal Processing, 2024, 72:1706-1723.
|
[41] |
谢壮, 朱家华, 徐舟, 等. 基于智能反射面辅助雷达的恒模多相波形-反射面联合优化算法[J]. 电子与信息学报, 2023, 45(11):3848-3859.
|
|
XIE Zhuang, ZHU Jiahua, XU Zhou, et al. Polyphase Waveform and Reflection Design Based on RIS-Aided Radar System[J]. Journal of Electronics & Information Technology, 2023, 45(11):3848-3859.
|