J4 ›› 2010, Vol. 37 ›› Issue (3): 429-435.doi: 10.3969/j.issn.1001-2400.2010.03.008

• 研究论文 • 上一篇    下一篇

基于张量局部和全局信息的人脸识别算法

温浩1;孙蕾2   

  1. (1. 西安电子科技大学 综合业务网理论及关键技术国家重点实验室,陕西 西安  710071;
    2. 西安电子科技大学 经济管理学院,陕西 西安  710071)
  • 收稿日期:2009-12-31 出版日期:2010-06-20 发布日期:2010-07-23
  • 通讯作者: 温浩
  • 作者简介:温浩(1979-),男,西安电子科技大学博士研究生,E-mail: smczg@126.com.
  • 基金资助:

    国家自然科学基金资助项目(70373046)

New face recognition algorithm using tensor local and global information

WEN Hao1;SUN Lei2   

  1. (1. State Key Lab. of Integrated Service Networks, Xidian Univ., Xi'an  710071, China;
    2. School of Economics and Management, Xidian Univ., Xi'an  710071, China)
  • Received:2009-12-31 Online:2010-06-20 Published:2010-07-23
  • Contact: WEN Hao

摘要:

现有的基于张量子空间的流形学习算法能够很好地利用图像的空间几何结构,但对流形的局部和全局信息利用得不够充分,为此提出了一种新的张量子空间学习算法:基于局部和全局信息的张量子空间投影.新算法充分利用人脸图像数据的局部流形结构(即类内非线性流形结构)和人脸图像数据的全局信息,使数据在投影空间中的类间分离度最大,通过迭代和投影得到最优张量子空间.在标准人脸数据库上的实验表明,新算法识别率高于张量线性判别分析(TLDA)、张量临界Fisher分析(TMFA)、张量局部判别投影(TLDP)、张量子空间(TSA)算法.

关键词: 人脸识别, 降维, 流形学习, 张量, 子空间

Abstract:

The current algorithms based on tensor subspace manifold learning can utilize the intrinsic geometrical structure of images. But the local information and global information are not utilized sufficiently in current algorithms. A novel tensor subspace learning algorithm is proposed in this paper which is named tensor local and global projection. The local nonlinear structure of the data manifold that is the local information of the data can be preserved in the algorithm, and at the same time, the global information of data is utilized. So the discriminant between classes of data in low dimension subspace can be maximized. And the optimal tensor subspace can be obtained by iteratively computing the generalized eigenvectors and projection. The experiments on the standard face database demonstrate that the right recognition rate of the novel algorithm is higher than the recognition rate of the four algorithms named TLDA,TMFA,TLDP and TSA.

Key words: face recognition, dimensional reduction, manifold learning, tensor, subspace