J4 ›› 2010, Vol. 37 ›› Issue (3): 459-463.doi: 10.3969/j.issn.1001-2400.2010.03.013

• 研究论文 • 上一篇    下一篇

快速增量主分量算法的近似协方差矩阵实现

曹向海1;刘宏伟2;吴顺君2
  

  1. (1. 西安电子科技大学 电子对抗研究所,陕西 西安  710071;
    2. 西安电子科技大学 雷达信号处理重点实验室,陕西 西安  710071)
  • 收稿日期:2009-03-09 出版日期:2010-06-20 发布日期:2010-07-23
  • 通讯作者: 曹向海
  • 作者简介:曹向海(1977-),男,博士,E-mail: caoxh@xidian.edu.cn.

Incremental principal component analysis using  the approximated covariance matrix

CAO Xiang-hai1;LIU Hong-wei2;WU Shun-jun2   

  1. (1. Research Inst. of Electronic Countermeasures, Xidian Univ., Xi'an  710071, China;
    2. Key Lab. of Radar Signal Processing, Xidian Univ., Xi'an  710071, China)
  • Received:2009-03-09 Online:2010-06-20 Published:2010-07-23
  • Contact: CAO Xiang-hai

摘要:

针对主分量分析法在实际应用中运算量较大的问题,首先基于特征向量相互正交的特性,将子空间投影算法的运算量降低为原算法的1/P(P为所需的特征向量个数).然后利用大特征值及其对应的特征向量构成的近似协方差矩阵,将子空间投影算法中的广义特征值分解问题转化为特征值分解,得到运算量降低为原算法1/N(N为向量维数)的快速算法.最后基于ORL人脸数据库的实验验证了算法的有效性.

关键词: 子空间投影算法, 特征分解, 增量主分量分析, 近似协方差矩阵

Abstract:

Firstly, with eigenvectors orthogonal to each other, the computation complexity of the subspace projection(SP) algorithm is reduced to 1/P of the original algorithm(where P is the number of desired eigencomponents). Then, the covariance matrix is replaced by the approximated covariance matrix which is composed of large eigenvalues and corresponding eigenvectors, the computation complexity can be reduced to 1/N of the original algorithm(where N is the input vector dimension)further. Finally, experimental results based on the ORL face database demonstrate the efficiency of the presented algorithm.

Key words: subspace projection, eigenvalue decomposition, incremental principal component analysis, approximated covariance matrix