J4 ›› 2010, Vol. 37 ›› Issue (5): 941-946.doi: 10.3969/j.issn.1001-2400.2010.05.029

• 研究论文 • 上一篇    下一篇

小波域中的广义非局部平均去噪算法

冯象初1;刘涛1;李亚峰1,2
  

  1. (1. 西安电子科技大学 理学院,陕西 西安  710071;
    2. 宝鸡文理学院 计算机科学系,陕西 宝鸡  721007)
  • 收稿日期:2009-04-10 出版日期:2010-10-20 发布日期:2010-10-11
  • 通讯作者: 冯象初
  • 作者简介:冯象初(1962-),男,教授,博士,E-mail: xcfeng@mail.xidian.edu.cn.
  • 基金资助:

    国家自然科学基金资助项目(60872138);宝鸡文理学院2009年院级科研重点资助项目(ZK09172)

Generalized nonlocal mean denoising research based on the wavelet domain

FENG Xiang-chu1;LIU Tao1;LI Ya-feng1,2   

  1. (1. School of Science, Xidian Univ., Xi'an  710071, China;
    2. Dept. of Computer Sci., Baoji Univ. of Arts and Sci., Baoji  721007, China)
  • Received:2009-04-10 Online:2010-10-20 Published:2010-10-11
  • Contact: FENG Xiang-chu

摘要:

图像小波系数的统计分布具有非高斯特性,可以用广义高斯模型进行描述.使用广义高斯分布对图像子带小波系数进行建模并估计广义高斯分布模型的参数,根据参数确定了非局部平均权值的广义表达式,在此基础上提出了一种基于广义高斯分布的小波域广义非局部平均去噪算法.仿真结果表明,相比小波域阈值去噪和小波域非局部平均去噪算法,该方法的峰值信噪比平均提高1.5~3.3dB,在边缘特征方面保持了良好的视觉效果.

关键词: 小波系数, 广义高斯分布, 非局部平均算法, 图像去噪

Abstract:

The statistics of image wavelet coefficients is non-Gaussian and can be described by generalized Gaussian distribution (GGD). The paper investigates the issues of the GGD statistical model for wavelet coefficients in a subband and the corresponding parameter estimation. The estimated parameters are used to define a generalized nonlocal mean which allows us to restore the original image. A nonlocal mean denoising algorithm in the wavelet domain based on the GGD statistical model is proposed. Simulation results indicate that the proposed method outperforms the others by 1.5~3.3dB in the PSNR, and keeps a better visual result in edges information reservation as well.

Key words: wavelet coefficients, generalized Gaussian distribution, nonlocal means algorithm, image denoising