J4 ›› 2011, Vol. 38 ›› Issue (1): 8-15.doi: 10.3969/j.issn.1001-2400.2011.01.002

• 研究论文 • 上一篇    下一篇

一种新的图像分割算法

徐建军;高山;毕笃彦;陈游   

  1. (空军工程大学 工程学院,陕西 西安   710038)
  • 收稿日期:2010-07-07 出版日期:2011-02-20 发布日期:2011-04-08
  • 通讯作者: 徐建军
  • 作者简介:徐建军(1978-),男,空军工程大学博士研究生,E-mail: xujianjunfly@126.com.
  • 基金资助:

    重点实验室基金资助项目(9140c610301080c6106)

A novel image segmentation algorithm

XU Jianjun;GAO Shan;BI Duyan;CHEN You   

  1. (School of Engineering, Air Force Engineering Univ., Xi'an  710038, China)
  • Received:2010-07-07 Online:2011-02-20 Published:2011-04-08
  • Contact: XU Jianjun

摘要:

针对一类普遍存在的图像,采用具有生物学背景的交叉视觉皮质模型进行图像分割.将交叉视觉皮质模型所具有的符合人眼对亮度响应非线性要求的指数衰减的阈值机制,改进为适合图像分割处理的线性衰减的阈值机制,提出了线性阈值-交叉视觉皮质模型.同时采用改进的二维Tsallis交叉熵作为分割准则,可自动地确定交叉视觉皮质模型神经元的分割阈值以及循环迭代次数.实验表明,这种分割算法优于经典的OSTU算法和K-means算法,同时基于改进的二维Tsallis交叉熵准则优于基于二维最大Shannon熵准则、传统二维Tsallis交叉熵准则和一维最小Tsallis交叉熵准则.

关键词: 图像分割, 交叉视觉皮质模型, 二维Tsallis交叉熵, 线性阈值

Abstract:

The Intersecting Cortical Model (ICM) is adopted for image segmentation. Because the nonlinear exponential attenuation threshold mechanism is suitable for brightness respondence but not suitable for image segmentation, we change it to the linear threshold mechanism which leads to the LT-ICM. Meanwhile, an improved 2-D Tsallis cross-entropy segmentation rule is proposed for determining the segmentation threshold and iteration time automatically. Experiments show that the proposed algorithm is better than OSTU and K-means algorithms for the texture image segmentation. Besides, our rule is more effective than the 2-D max-Shannon-entropy rule, traditional 2-D Tsallis cross-entropy rule, and min-cross-entropy rule.

Key words: image segmentation, intersecting cortical model, 2-D Tsallis cross-entropy, linear-threshold