J4 ›› 2011, Vol. 38 ›› Issue (2): 8-12+196.doi: 10.3969/j.issn.1001-2400.2011.02.002

• 研究论文 • 上一篇    下一篇

一种简化的GF(q)-LDPC码译码算法

胡树楷;王新梅   

  1. (西安电子科技大学 综合业务网理论及关键技术国家重点实验室,陕西 西安  710071)
  • 收稿日期:2010-04-12 出版日期:2011-04-20 发布日期:2011-05-26
  • 通讯作者: 胡树楷
  • 作者简介:胡树楷(1981-),男,西安电子科技大学博士研究生,E-mail: hushukai@sohu.com.
  • 基金资助:

    国家自然科学基金资助项目(U0635003);国家973项目基金资助项目(2010CB328300)

Simplified decoding algorithm for LDPC over GF(q)

HU Shukai;WANG Xinmei   

  1. (State Key Lab. of Integrated Service Networks, Xidian Univ., Xi'an  710071, China)
  • Received:2010-04-12 Online:2011-04-20 Published:2011-05-26
  • Contact: HU Shukai

摘要:

提出一种简单高效的GF(q)-LDPC码译码算法,将对数似然比和积译码算法中的雅可比对数利用一阶泰勒级数近似,从而降低译码时校验点计算的复杂度.与目前广泛应用的Offset min-sum算法相比较,在BER为10-4处性能有0.2dB左右的提升,并且本算法中的参数设计独立于有限域的阶数.

关键词: 多元LDPC码, 和积译码算法, 最小和算法, 迭代译码

Abstract:

A simple, yet effective decoding algorithm for LDPC (low-density parity-check) codes over GF(q) is presented. By taking advantages of the first-term Taylor's series expansion to approximate the correction term of the Jacobian logarithm used in LLR-SPA(log-likelihood ratio sum-product algorithm), we propose an algorithm which significantly simplifies the check node update computation of the optimal LLR-SPA. Compared to the offset min-sum algorithm, the proposed algorithm achieves a gain of about 0.2dB at the BER of 10-4. Moreover, unlike the offset min-sum algorithm, parameters of this algorithm are independent of the order of the Galois Filed.

Key words: nonbinary LDPC codes, sum-product algorithm, min-sum algorithm, iterative decoding