J4 ›› 2011, Vol. 38 ›› Issue (3): 7-12+82.doi: 10.3969/j.issn.1001-2400.2011.03.002

• 研究论文 • 上一篇    下一篇

红外头盔式眼动仪的瞳孔中心定位算法

王军宁;刘涛;何迪;武媛媛   

  1. (西安电子科技大学 通信工程学院,陕西 西安  710071)
  • 收稿日期:2010-05-18 出版日期:2011-06-20 发布日期:2011-07-14
  • 通讯作者: 王军宁
  • 作者简介:王军宁(1958-),男,教授,E-mail: xdtidsp@mail.xidian.edu.cn.
  • 基金资助:

    高等学校学科创新引智计划资助项目(B08038)

Pupil center localization algorithm used for the  IR head-mounted eye tracker

WANG Junning;LIU Tao;HE Di;WU Yuanyuan   

  1. (School of Telecommunication Engineering, Xidian Univ., Xi'an   710071, China)
  • Received:2010-05-18 Online:2011-06-20 Published:2011-07-14
  • Contact: WANG Junning

摘要:

为了提高瞳孔中心定位精度,降低运算复杂度,首先采用星射线方法获取瞳孔边界点,与对整幅图搜索相比,计算量大大减小.设定感兴趣区域,对眼皮、眼睫毛及光斑干扰产生的虚假特征点进行剔除,然后利用特征点通过随机化的椭圆拟合定位瞳孔中心.随机化椭圆拟合允许杂质点的存在,确保了拟合定位算法的准确性,对虚假点的剔除更进一步加快了拟合速度.在连续帧处理时通过瞳孔像素数的变化快速对眨眼进行检测,区分眨眼与伪眨眼.实验结果表明,该算法简单且鲁棒性好.

关键词: 瞳孔中心定位, 星射线, 椭圆拟合, 眨眼检测

Abstract:

In order to improve pupil center localization accuracy and reduce computational complexity, firstly, we adopt star rays to get pupil counter points. Its amount of calculation is cut down drastically compared with searching in the whole figure. Secondly, we cope with some false points produced by eyelashes, eyelids and glints in the interesting area. Then, we apply a randomized method of ellipse fitting to determine the pupil center with pupil counter points. The inclusion is allowed in randomized ellipse fitting so as to ensure the accuracy of the fitting localization algorithm. And eliminating false points further increases the fitting rate. The variation of the number of pupil pixels is detected to distinguish between true-blink and pseudo-blink in dealing with continuous frames. Experiments show that the new algorithm is simple and robust.

Key words: pupil center localization, star rays, ellipse fitting, blink detection