J4 ›› 2011, Vol. 38 ›› Issue (6): 30-36+145.doi: 10.3969/j.issn.1001-2400.2011.06.005

• 研究论文 • 上一篇    下一篇

一种多模态医学影像鲁棒配准方法

李琦;姬红兵;同鸣   

  1. (西安电子科技大学 电子工程学院,陕西 西安  710071)
  • 收稿日期:2010-08-17 出版日期:2011-12-20 发布日期:2011-11-29
  • 通讯作者: 李琦
  • 作者简介:李琦(1979-),女,讲师,西安电子科技大学博士研究生,E-mail: qili@xidian.edu.cn
  • 基金资助:

    陕西省自然科学基金资助项目(SJ08F15)

Robust registration of multimodality medical images based on the principal ordinal feature and hybrid entropy

LI Qi;JI Hongbing;TONG Ming   

  1. (School of Electronic Engineering, Xidian Univ., Xi'an  710071, China)
  • Received:2010-08-17 Online:2011-12-20 Published:2011-11-29
  • Contact: LI Qi

摘要:

为提高多模态医学影像配准的鲁棒性和精度,提出了一种基于主定序和混合熵的配准新方法.首先利用主成分分析方法定义了图像的主定序特征,描述图像邻域像素间的空间信息和微观结构特性;进而结合图像灰度信息构造了一种基于混合熵的配准测度,有效保证了配准测度函数的光滑性和收敛性.多组多模态医学影像测试结果表明,新方法能有效抑制噪声,具有很高的配准精度,鲁棒性强,优于现有的几种方法.

关键词: 图像配准, 互信息, 主定序特征, 混合熵

Abstract:

To improve the robustness and precision of multimodality medical image registration, a principal ordinal feature and hybrid entropy based registration method is presented. A principal ordinal feature is defined and used to represent the spatial information between the neighboring pixels and the properties of the specified micro-structure in medical images. Integrating with pixel intensities, a similarity measure based on hybrid entropy is defined to register multimodality images. The proposed method is demonstrated using several pairs of multimodality medical images and experimental results show that the noise of images can be effectively suppressed and that compared with some existing methods, the proposed registration algorithm is of higher precision and better robustness.

Key words: image registration, mutual information, principal ordinal feature, hybrid entropy

中图分类号: 

  • TP391.4