J4 ›› 2012, Vol. 39 ›› Issue (4): 103-108.doi: 10.3969/j.issn.1001-2400.2012.04.019

• 研究论文 • 上一篇    下一篇

结合WTLBP特征和SVM的复杂场景文本定位方法

刘晓佩;卢朝阳;李静   

  1. (西安电子科技大学 综合业务网理论及关键技术国家重点实验室,陕西 西安  710071)
  • 收稿日期:2011-06-26 出版日期:2012-08-20 发布日期:2012-10-08
  • 通讯作者: 刘晓佩
  • 作者简介:刘晓佩(1976-),女,西安电子科技大学博士研究生,E-mail: liuxiaopei2007@163.com.
  • 基金资助:

    国家自然科学基金资助项目(60872141);中央高校基本科研业务费专项基金资助项目(K50510010007);陕西省自然科学基础研究计划资助项目(2009JQ8019)

Complex scene text location method based on WTLBP and SVM

LIU Xiaopei;LU Zhaoyang;LI Jing   

  1. (State Key Lab. of Integrated Service Networks, Xidian Univ., Xi'an  710071, China)
  • Received:2011-06-26 Online:2012-08-20 Published:2012-10-08
  • Contact: LIU Xiaopei

摘要:

针对自然环境中文字结构差异性大,文字和非文字难以有效区分而造成定位虚警率较高的问题,提出利用小波变换(WT)和多尺度LBP算子相结合的方法(WTLBP)提取文字特征,并将其用于对候选文字区域的分类确认,以降低文本定位虚警率.算法首先利用文字笔画边缘实现快速的文本区域检测,获得候选的文字区域;然后,提取候选文字区域的WTLBP纹理特征,结合支持向量机(SVM)分类器对候选文字区域进行分类确认.实验结果表明, WTLBP文字特征具有较高的区分度,能够有效区分文字和非文字区域,将其用于对候选区域的分类确认可大大降低复杂场景中文本定位虚警率.

关键词: 文本定位, 复杂场景, WTLBP, 支持向量机

Abstract:

To reduce the false alarm rate in a complex scene text location, a text mode description method based on the combination of wavelet transform and LBP is proposed, which is used to classify candidate text regions as text or non-text regions. In the procedure of text location, firstly, the stroke edge is used to detect text regions, and the candidate text regions are obtained; secondly, WTLBP features of candidate text regions are extracted, and the support vector machine (SVM) classifier is employed to determine whether candidate text regions are text regions or not. Experimental results show that the proposed text feature is of high discrimination, and that using it in the procedure of verification can greatly reduce the false alarm rate of the scene text location.

Key words: text location, complex scene, WTLBP, support vector machine