J4 ›› 2012, Vol. 39 ›› Issue (4): 144-148+171.doi: 10.3969/j.issn.1001-2400.2012.04.026

• 研究论文 • 上一篇    下一篇

低冗余的压缩感知观测

宋晓霞1,2;石光明1   

  1. (1. 西安电子科技大学 智能感知与图像理解教育部重点实验室,陕西 西安  710071;
    2. 山西大同大学 物理与电子科学学院,山西 大同  037009)
  • 收稿日期:2011-05-21 出版日期:2012-08-20 发布日期:2012-10-08
  • 通讯作者: 宋晓霞
  • 作者简介:宋晓霞(1975-),女,副教授,西安电子科技大学博士研究生,E-mail: xxsong@mail.xidian.edu.cn.
  • 基金资助:

    国家自然科学基金资助项目(61033004, 61072104,61070138, 60902031);高等学校博士学科点专项科研基金资助项目(20090203110003)

Low-redundancy compressed sensing measurements

SONG Xiaoxia1,2;SHI Guangming1   

  1. (1. Ministry of Education Key Lab. of Intelligent Perception and Image Understanding, Xidian Univ., Xi'an  710071, China;
    2. School of Physics & Electronics, Shanxi Datong Univ., Datong  037009, China)
  • Received:2011-05-21 Online:2012-08-20 Published:2012-10-08
  • Contact: SONG Xiaoxia

摘要:

为了解决传统压缩方法很难有效地减少压缩感知观测的难题,基于互相关理论、集合论和序列压缩感知方法,提出了一种获取低冗余压缩感知观测的方法.在所提方法中,依据互相关理论,在保证信号完全重构的前提下,尽可能去除原观测集中的一些冗余观测,获得一个较小的观测集.然后,在已获得的较小观测集中,基于每个观测对于信号重构的重要程度,将其分为关键观测和非关键观测,在保证信号完全重构的前提下,迭代剔除一些非关键观测,直到观测集中不再包含非关键观测为止.实验结果表明,所提方法仅用原观测集中40%~70%的观测就可以获得与原观测集几乎相同的信号重构质量.

关键词: 压缩感知, 互相关, 信号重构, 稀疏表示, 观测矩阵

Abstract:

To solve the difficult problem that it is difficult for traditional compression methods to efficiently reduce compressed sensing measurements, this paper proposes a method for obtaining the low-redundancy compressed sensing measurements based on the mutual coherence theory, set theory and sequential compressed sensing. In the proposed method, according to the mutual coherence theory, a smaller measurement set is obtained by removing some redundant measurements from the original measurement set in the premise of ensuring signal reconstruction. Then, the smaller measurement set obtained above is classified into the key set (only including key measurement) or the non-key set (only including non-key measurement) according to the important degree of each measurement for signal reconstruction. And some non-key measurements are eliminated iteratively in the premise of ensuring signal reconstruction until the measurement set does not contain a non-key measurement again. Experimental results show that the proposed method can only take 40 to 70 percent of the original measurement set to obtain almost the same reconstruction quality as that by the original measurement set.

Key words: compressed sensing, mutual coherence, signal reconstruction, sparse representation, measurement matrix

中图分类号: 

  • TN911. 72