J4 ›› 2013, Vol. 40 ›› Issue (5): 200-204.doi: 10.3969/j.issn.1001-2400.2013.05.032

• 研究论文 • 上一篇    

部分参考型图像质量的模糊分类评价

侯伟龙;何立火;高飞   

  1. (西安电子科技大学 电子工程学院,陕西 西安  710071)
  • 收稿日期:2012-11-07 出版日期:2013-10-20 发布日期:2013-11-27
  • 通讯作者: 侯伟龙
  • 作者简介:侯伟龙(1988-),男,西安电子科技大学博士研究生,E-mail:weilonghou@gmail.com.
  • 基金资助:

    中央高校基本科研业务费专项资金资助项目(K50511020016);中国博士后科学基金资助项目(20110490166);国家自然科学基金资助项目(60902082);陕西省自然科学基础研究计划资助项目(2011JQ8019);教育部留学回国人员科研启动基金资助项目

Reduced-reference image quality assessment based on  fuzzy classification

HOU Weilong;HE Lihuo;GAO Fei   

  1. (School of Electronic Engineering, Xidian Univ., Xi'an  710071, China)
  • Received:2012-11-07 Online:2013-10-20 Published:2013-11-27
  • Contact: HOU Weilong

摘要:

图像质量的客观评价是图像处理领域中的一个重要分支.其评价指标可以作为一种测度或者准则用来校准图像处理系统,或用于图像处理算法的优化及参数的优选.部分参考型图像质量客观评价方法已经成为图像质量评价领域研究的热点之一.考虑到人眼对图像质量感知的模糊性,将图像质量空间划分为若干模糊集,利用自然场景统计特征,将图像质量评价问题转化为模糊分类问题,提出了一种快速、有效的部分参考型图像质量评价方法.该方法与经典的部分参考型图像质量评价方法相比,主观感知的相关系数平均提高,计算代价显著降低,与人类主观感知有很好的一致性.

关键词: 图像质量评价, 部分参考型, 模糊分类

Abstract:

Image quality assessment is an important branch in the fields of image processing. It would be employed for calibrating image processing system or algorithms, and be applied for algorithm optimizing and parameter setting. Reduced-reference image quality assessment (RR-IQA) has become to be one of the focuses in image processing fields. Inspired by the fuzzy human evaluation, an efficient RR-IQA framework is proposed in this paper. In the framework, the images are allocated into several fuzzy sets with their degrees of memberships. The natural scene statistics (NSS) in wavelet domain is used for extracting features. After that, a multi-class fuzzy classifier is training for assigning image features into fuzzy sets with their corresponding degrees of memberships. Contrast to the typical RR-IQA methods, the proposed one relates well with the human evaluations and has low computational complexity. The experimental results demonstrate that the proposed framework outperforms the state-of-the-art reduced-reference methods.

Key words: image quality assessment, reduced-reference, fuzzy classification

中图分类号: 

  • TN911.73