J4 ›› 2013, Vol. 40 ›› Issue (6): 140-146.doi: 10.3969/j.issn.1001-2400.2013.06.024

• 研究论文 • 上一篇    下一篇

非局部MCMC采样和低秩逼近的图像去噪算法

罗亮1;冯象初1;霍雷刚1;张选德1,2;吴玉莲1,3;李小平1   

  1. (1. 西安电子科技大学 理学院,陕西 西安  710071;
    2. 宁夏大学 数学计算机学院,宁夏 银川  750021;
    3. 西安医学院 公共课部,陕西 西安  710021)
  • 收稿日期:2012-08-28 出版日期:2013-12-20 发布日期:2014-01-10
  • 通讯作者: 罗亮
  • 作者简介:罗亮(1982-),男,西安电子科技大学博士研究生,E-mail: luoliang775@163.com.
  • 基金资助:

    国家自然科学基金资助项目(61271294,60872138, 61105011, 11101292)

Image denoising method based on non-local Markov-chain  Monte Carlo sampling and low rank approximation

LUO Liang1;FENG Xiangchu1;HUO Leigang1;ZHANG Xuande1,2;WU Yulian1,3;LI Xiaoping1   

  1. (1. School of Science, Xidian Univ., Xi'an  710071, China;
    2. School of Mathematics and Computer, Ningxia Univ., Yingchuan  750021, China;
    3. Common Course Department, Xi'an Medical College, Xi’an  710021, China)
  • Received:2012-08-28 Online:2013-12-20 Published:2014-01-10
  • Contact: LUO Liang

摘要:

针对噪声把原图像中的一些细节掩盖了的问题,提出一种非局部马尔科夫蒙特卡罗采样和低秩逼近的随机去噪方法.首先通过马尔科夫蒙特卡罗随机采样寻找每个图像块的相似匹配块簇,然后对这些相似匹配块簇进行奇异值分解,用分解后的低秩结构恢复原图像,从而达到去噪的目的.实验表明,这种方法计算复杂度低.与非局部平均方法相比,较好地保留了边缘等细节信息; 与BM3D方法相比,能保持较好的视觉质量.

关键词: 图像去噪, 非局部马尔科夫蒙特卡罗方法, 低秩逼近, 后验概率估计

Abstract:

Combining non-local Markov-chain Monte Carlo sampling and low-rank approximation of the matrix method, an approach for image noise removal is presented. The cluster of similar patches is searched by using Markov-chain Monte Carlo sampling. The cluster matrix of similar patches is decomposed by the singular value decomposition method,and the image noise is suppressed by applying the low rank structure from decomposing. Simulation results show that the proposed method outperforms the BM3D and the non-local means (NLM)method in computational-complexity. The proposed method has a better performance in protecting image details compared with the NLM method, and has some advantages over the BM3D method in terms of visual quality.

Key words: image denoising, non-local Markov-Chain Monte Carlo method, approximation of low rank matrix, posterior probability estimate

中图分类号: 

  • TP391