J4 ›› 2014, Vol. 41 ›› Issue (5): 79-83+147.doi: 10.3969/j.issn.1001-2400.2014.05.014

• 研究论文 • 上一篇    下一篇

一种采用双混沌搜索的类电磁机制算法

姜建国;刘梦楠;刘永青;苏仟;张丽媛   

  1. (西安电子科技大学 计算机学院,陕西 西安  710071)
  • 收稿日期:2013-03-12 出版日期:2014-10-20 发布日期:2014-11-27
  • 通讯作者: 姜建国
  • 作者简介:姜建国(1956- ),男, 教授,E-mail: jgjiang@mail.xidian.edu.cn.
  • 基金资助:

    国家部委基础科研计划资助项目(A1120132007)

Electromagnetism-like mechanism algorithm via dual chaotic search

JIANG Jianguo;LIU Mengnan;LIU Yongqing;SU Qian;ZHANG Liyuan   

  1. (School of Computer Science and Technology, Xidian Univ., Xi'an  710071, China)
  • Received:2013-03-12 Online:2014-10-20 Published:2014-11-27
  • Contact: JIANG Jianguo

摘要:

针对现有算法中初始种群随机性强、局部搜索能力差、移动公式效率低等问题,提出了一种改进的类电磁机制算法.结合反向学习理论,引入带扰动因子的反向学习机制构造初始种群;提出了一种双混沌优化机制用于局部搜索;运用改进后的公式计算粒子之间的合力;设计了一种自适应移动算子来更新粒子.实验结果表明,改进后的算法具有更好的收敛效果和更高的求解精度.

关键词: 类电磁机制算法, 反向学习机制, 扰动, 双混沌, 全局优化

Abstract:

An improved Electromagnetism-like mechanism algorithm is proposed to overcome the drawbacks of the original EM algorithm, such as strong randomness of the initial population, low ability for local search and low efficiency in the movement according to the total force. The new algorithm generates the initial population with the disturbance factor and opposite learning mechanism, improves the local search algorithm with the double chaotic search method, and calculates the total force between particles with the modified equation. Besides, the algorithm is used to design an adaptive move operator for updating the locations of those particles. Experimental results indicate that the proposed algorithm has a better convergence effect and a higher solution accuracy.

Key words: electromagnetism-like mechanism algorithm, opposite learning mechanism, disturbance, dual chaotic search, global optimization

中图分类号: 

  • TP301.6