J4 ›› 2014, Vol. 41 ›› Issue (6): 106-110.doi: 10.3969/j.issn.1001-2400.2014.06.018

• 研究论文 • 上一篇    下一篇

时不变系统格莱姆矩阵的精细积分

李素兰1;任元昊1;保宏1;张伟2   

  1. (1. 西安电子科技大学 电子装备结构设计教育部重点实验室,陕西 西安  710071;
    2. 武汉市第二船舶设计研究所,湖北 武汉  430064)
  • 收稿日期:2013-07-18 出版日期:2014-12-20 发布日期:2015-01-19
  • 通讯作者: 李素兰
  • 基金资助:

    国家自然科学基金资助项目(51305321, 51175398, 51035006,51105290);中央高校基本科研业务费专项资金资助项目( K5051304021)

Precise integration method for the Gram matrix of time-invariant systems

LI Sulan1;REN Yuanhao1;BAO Hong1;ZHANG Wei2   

  1. (1. Ministry of Education Key Lab. of Electronic Equipment Structure Design, Xidian Univ., Xi'an  710071, China;
    2. Wuhan Second Ship Design and Research Institute, Wuhan  430064, China)
  • Received:2013-07-18 Online:2014-12-20 Published:2015-01-19
  • Contact: LI Sulan
  • About author:李素兰(1982-),女,讲师,西安电子科技大学博士研究生,E-mail:slli@xidian.edu.cn.

摘要:

格莱姆矩阵是反映线性系统结构特性的重要指标,通过对时不变系统状态方程的分析,将指数矩阵精细积分法的关键思想,即加法定理和增量存储直接应用于格莱姆矩阵的求解,给出了格莱姆矩阵的具体计算方法,得到了其精确数值解.该求解方法不需要矩阵求逆运算,当系统矩阵奇异或不稳定时,均能高精度求解.最后通过两个数值算例的仿真,验证了以上方法的正确性和有效性.

关键词: 格莱姆矩阵, 精细积分法, 数值计算方法

Abstract:

The Gram Matrix is an important index for reflecting the structure characteristics of a linear time-invariant system. By analyzing the state equations for the linear time-variant system, the key idea of precise integration method(PIM), namely the addition theorem and incremental storage technology, is applied to solve the Gram Matrix. The specific calculation method is given and the exact solution is also obtained. The matrix inversion is not required, even when the system is singular or unstable, it can also be solved with high precision. Finally, two numerical examples are given to demonstrate the correctness and validity of the method.

Key words: Gram matrix, precise integration method, numerical method

中图分类号: 

  • O241.4