J4 ›› 2015, Vol. 42 ›› Issue (5): 147-153+206.doi: 10.3969/j.issn.1001-2400.2015.05.025

• 研究论文 • 上一篇    下一篇

支持向量机用于电离层foF2的短期区域预报

李美玲1;胡耀垓1;周晨1;赵正予1;张援农1;刘静2;邓忠新3   

  1. (1. 武汉大学 电子信息学院,湖北 武汉  430072;
    2. 中国地震局 地震预测所,北京  100036;
    3. 中国电波传播研究所,山东 青岛  266107)
  • 收稿日期:2014-05-10 出版日期:2015-10-20 发布日期:2015-12-03
  • 通讯作者: 李美玲
  • 作者简介:李美玲(1989-),女,武汉大学硕士研究生,E-mail: meilingli@whu.edu.cn.
  • 基金资助:

    国家自然科学基金资助项目(41327002,41375007);湖北省自然科学基金青年杰出人才资助项目(2011CDA099)

On the short-term regional prediction of foF2 based on the support vector machine

LI Meiling1;HU Yaogai1;ZHOU Chen1;ZHAO Zhengyu1;ZHANG Yuannong1;LIU Jing2;DENG Zhongxin3   

  1. (1. School of Electronic Information, Wuhan Univ., Wuhan  430072, China;
    2. Institute of Seismology, China Earthquake Administration, Beijing  100036, China;
    3. China Research Institute of Radio Wave Propagation, Qingdao  266107, China)
  • Received:2014-05-10 Online:2015-10-20 Published:2015-12-03
  • Contact: LI Meiling

摘要:

为了提高电离层短期区域预报效果,提出了基于支持向量机方法考虑太阳活动、地磁活动、中高层大气、地理位置等因素对电离层的影响.对中国地区电离层F2层临界频率(foF2)提前1h的区域预报模型,将支持向量机的预报模型与输入同样参数的反向传播神经网络和国际参考电离层模型从多方面进行对比分析,结果显示,支持向量机模型的年平均预报相对误差相对神经网络和国际参考电离层模型在太阳活动高年分别降低了2.5%和9.6%,在太阳活动低年分别降低了1.9%和7.5%.在低纬度地区,支持向量机模型的预报优势更加显著,在高年和低年相对反向传播神经网络分别降低了3.2%和2.7%.对暴时,支持向量机模型也表现出一定的预报能力.这表明支持向量机模型应用在中国区域电离层foF2短期预报上,相对反向传播神经网络和国际参考电离层模型更有优势.

关键词: 支持向量机, 电离层foF2, 区域预报, 对比分析

Abstract:

Ionospheric short-term forecasting is very important to radio communication, navigation and radar systems. In this paper, in order to improve the regional prediction accuracy of ionosphere, a model of regional prediction of the ionospheric F2 layer critical frequency in China area 1 hour in advance is set up based on the support vector machine (Support Vector Machine, referred to as SVM for short) method. In this model, the influence of solar activity, geomagnetic activity, the upper atmosphere, geographical location and other factors on the ionosphere is taken into consideration. Results of this model is compared to Back-Propagation referred to as BP for short the neural network of the same input parameters and the IRI model (International Reference Ionosphere, referred to as IRI for short). The results show that the average relative error of annual prediction of SVM in high solar activity years decreases by 2.5% and 9.6%, respectively, compared with the neural network and the IRI models and in low solar activity  decreases by 1.8% and 7.5%, respectively. In the low latitude area, the prediction of SVM has more significant advantages over the BP neural network. In the high and low solar activity years it decreases by 3.2% and 2.7%, respectively. During the storm time SVM also shows a relatively good prediction ability. This proves that the developed model based on SVM in the paper has more advantages over the BP neural network and IRI model.

Key words: support vector machine, ionospheric foF2, regional prediction, comparative analysis