J4 ›› 2015, Vol. 42 ›› Issue (5): 154-160.doi: 10.3969/j.issn.1001-2400.2015.05.026

• 研究论文 • 上一篇    下一篇

一种图像特征增强的各向异性扩散去噪方法

马洪晋;聂玉峰   

  1. (西北工业大学 应用数学系, 陕西 西安  710129)
  • 收稿日期:2014-06-05 出版日期:2015-10-20 发布日期:2015-12-03
  • 通讯作者: 马洪晋
  • 作者简介:马洪晋(1990-),女,西北工业大学硕士研究生,E-mail: Hjma@mail.nwpu.edu.cn.
  • 基金资助:

    国家自然科学基金资助项目(11471262)

Anisotropic diffusion denoising method based on image feature enhancement

MA Hongjin;NIE Yufeng   

  1. (Dept. of Applied Mathematics, Northwestern Polytechnical Univ., Xi'an  710129, China)
  • Received:2014-06-05 Online:2015-10-20 Published:2015-12-03
  • Contact: MA Hongjin

摘要:

提出了一种新的图像特征增强扩散方程.针对相干增强扩散模型易在光滑区域产生虚假边缘且不能有效地保护图像细节特征的缺点,新扩散方程通过构造特征指标和梯度变差指标将图像信息更精细地区分为光滑区域、边缘、拐角和孤立噪声点,并根据这些分类结果设置扩散张量的特征值,使其在光滑区域内和孤立噪声点处沿边缘方向和垂直于边缘方向均具有较大值,而在拐角处沿边缘方向和垂直于边缘方向均具有较小值,在边缘处沿边缘方向值大,垂直于边缘方向值小,从而在更有效去噪的同时增强图像的边缘和细节特征.理论分析和数值实验结果均表明,新的扩散方程是一种有效的图像去噪模型.

关键词: 图像去噪, 各向异性扩散, 图像特征增强, 特征指标, 梯度变差指标

Abstract:

This paper presents an image feature enhancement diffusion model. Since the coherence-enhancing anisotropic diffusion model, proposed by J.Weickert, often induces false edges in slippy regions and can not preserve the detail features effectively, the new model poses two characteristic indexes and one gradient variance index to finely describe much more image information than the previous work, such as corners and isolated noises except with slippy regions and edges, and defines eigenvalues based on the classification results such that the new diffusion tensor has large eigenvalues along both the gradient direction and edge direction in the slippy regions and at isolated noises, but has small eigenvalues along the two directions at corners, and has small eigenvalue along the gradient direction and large eigenvalue along the edge direction at edges. So it can remove noises efficiently and at the same time enhance edges and detail features. Theoretical analysis and numerical experiments show the effectiveness of the proposed model.

Key words: image denoising, anisotropic diffusion, image feature enhancement, characteristic index, gradient variance index

中图分类号: 

  • TN911.73