J4 ›› 2015, Vol. 42 ›› Issue (6): 1-5.doi: 10.3969/j.issn.1001-2400.2015.06.001

• 研究论文 •    下一篇

Alpha稳定分布噪声下数字调制识别新方法

刘明骞;李兵兵;石亚云   

  1. (西安电子科技大学 综合业务网理论及关键技术国家重点实验室,陕西 西安  710071)
  • 收稿日期:2014-07-04 出版日期:2015-12-20 发布日期:2016-01-25
  • 通讯作者: 刘明骞
  • 作者简介:刘明骞(1982-),男,讲师,博士, E-mail:mqliu@mail.xidian.edu.cn.
  • 基金资助:

    国家自然科学基金资助项目(61501348, 61271299);国家博士后科学基金资助项目(2014M562372); 国家“863”高技术研究发展计划资助项目(2007AA01Z288);高等学校学科创新引智计划资助项目(B08038)

Novel recognition method for digital modulation signals with Alpha stable noise

LIU Mingqian;LI Bingbing;SHI Yayun   

  1. (State Key Lab. of Integrated Service Networks, Xidian Univ., Xi'an  710071, China)
  • Received:2014-07-04 Online:2015-12-20 Published:2016-01-25
  • Contact: LIU Mingqian

摘要:

针对传统的Alpha稳定分布噪声下数字调制识别方法在低信噪比环境下识别性能较差的问题,提出了一种基于广义累积量和广义瞬时相位的数字调制信号识别的新方法.该方法首先构造广义累积量特征参数,并提取分数阶傅里叶变换的零中心归一化广义瞬时相位的谱密度最大值作为识别的特征参数,然后通过最小均方误差分类器和门限的设置来实现Alpha稳定分布噪声下数字调制信号的识别.仿真结果表明,在Alpha稳定分布噪声下,该方法不仅识别性能较好,而且计算复杂度较低.

关键词: 调制识别, Alpha稳定分布噪声, 广义累积量, 广义瞬时相位, 最小均方误差

Abstract:

The traditional methods for digital modulation signals recognition with Alpha stable distribution noise have the problem of poor performance. In this paper, a novel recognition method for digital modulation signals based on the generalized cumulant and generalized instantaneous phase is proposed to solve this problem. This method extracts the characteristic parameters which are the generalized cumulant and maximum of normalization and center generalized instantaneous phase spectral density based on fractional Fourier transform. And then the minimum mean square error classifier and the threshold are used to achieve modulation recognition of digital modulation signals with Alpha stable distribution noise. Simulation results show that the proposed method has not only better performance but also lower computation complexity than the traditional recognition methods in an Alpha stable distribution noise environment.

Key words: modulation recognition, Alpha-stable distribution noise, generalized cumulant, generalized instantaneous phase, minimum mean square error