西安电子科技大学学报 ›› 2016, Vol. 43 ›› Issue (2): 89-94.doi: 10.3969/j.issn.1001-2400.2016.02.016

• 研究论文 • 上一篇    下一篇

一种多特征联合的地面SAR目标分层检测方法

曾丽娜1;周德云1;邢孟道2;张堃1   

  1. (1. 西北工业大学 电子信息学院,陕西 西安  710072;
    2. 西安电子科技大学 雷达信号处理国家重点实验室,陕西 西安  710071)
  • 收稿日期:2014-11-19 出版日期:2016-04-20 发布日期:2016-05-27
  • 通讯作者: 曾丽娜
  • 作者简介:曾丽娜(1982-),女,西北工业大学博士研究生,E-mail: zenglina@mail.nwpu.edu.cn.
  • 基金资助:

    国家自然科学基金资助项目(61401363)

Novel SAR target detection algorithm via multiple features

ZENG Lina1;ZHOU Deyun1;XING Mengdao2;ZHANG Kun1   

  1. (1. School of Electronics and Information, Northwestern Polytechnical Univ., Xi'an  710072, China;
    2. National Key Lab. of Radar Signal Processing, Xidian Univ., Xi'an  710071, China)
  • Received:2014-11-19 Online:2016-04-20 Published:2016-05-27
  • Contact: ZENG Lina

摘要:

提出了一种多特征联合的地面合成孔径雷达图像中装甲车等兴趣目标分层检测方法,根据反映目标真实物理性质的散射强度、尺寸以及与杂波差异等有效特征实现分层检测.研究提取尺寸特征、边界变化特征为兴趣目标有效特征,通过初步目标检测层和潜在目标鉴别层逐步剔除图像背景、自然杂波、人造杂波等非兴趣目标.有效特征提取能够在较少的特征数目条件下满足兴趣目标检测和鉴别的精度要求;分层处理能够在特征复杂度增加的情况下降低虚警检测和鉴别概率.与传统双参数恒虚警率、主成分分析等方法进行对比测试,从检测精度、检测效率方面验证了该方法的有效性.

关键词: 合成孔径雷达, 兴趣目标, 有效特征, 分层检测

Abstract:

A detection method for SAR targets based on combining multiple features is proposed. The targets of interest are detected according to the physical properties, which reflect the true characteristics including scattering intensity, size and differences from the clutter. By analyzing these characteristics, the size and boundary changes are determined as effective features. The image background, natural clutter, man-made clutter are eliminated in sequence using the developed detection algorithm, which contains two layers, namely, the initial target detection layer and the potential target identification layer. Effective features ensure that a smaller number of features are used to meet the precision of the target detection, and the discrimination detection method ensure that the probability of false alarm is reduced gradually with the increased complexity of the feature extraction. Comparison with traditional target detectors, such as CFAR, PCA, etc. is performed in detail. Experimental results show the superiorities of the proposal in both accuracy and efficiency.

Key words: synthetic aperture radar, targets of interest, effective feature, target discrimination