西安电子科技大学学报 ›› 2016, Vol. 43 ›› Issue (2): 145-149.doi: 10.3969/j.issn.1001-2400.2016.02.025

• 研究论文 • 上一篇    下一篇

马尔可夫蒙特卡罗的室内定位算法

王跃;巴斌;崔维嘉;逯志宇   

  1. (解放军信息工程大学 信息系统工程学院,河南 郑州  450002)
  • 收稿日期:2014-12-25 出版日期:2016-04-20 发布日期:2016-05-27
  • 通讯作者: 王跃
  • 作者简介:王跃(1986-),男,解放军信息工程大学硕士研究生,E-mail: wangyue302@126.com.
  • 基金资助:

    国家863计划资助项目(2012AA01A502, 2012AA01A505)

Indoor positioning algorithm based on Markov Monte Carlo

WANG Yue;BA Bin;CUI Weijia;LU Zhiyu   

  1. (Information System Eng. Inst., PLA Information Engineering Univ., Zhengzhou  450002, China)
  • Received:2014-12-25 Online:2016-04-20 Published:2016-05-27
  • Contact: WANG Yue

摘要:

针对无线局域网室内定位中接收功率受干扰影响导致位置估计精度偏低的问题,构建基于传播损耗模型的似然函数模型,采用马尔可夫蒙特卡罗抽样方法进行位置估计.该方法将干扰因素构建到模型中,运用随机抽样的方法解决估计问题,具有收敛速度快、估计精度高的优势.理论推导了该模型下坐标估计的克拉美罗界,并在仿真实验中,给出克拉美罗界在定位空间的分布.仿真实验表明,马尔可夫蒙特卡罗抽样方法可精确估计出目标位置,在相同仿真条件下,与共轭梯度法相比,马尔可夫蒙特卡罗抽样方法估计精度高、复杂度低.

关键词: 无线局域网室内定位, 似然函数模型, 蒙特卡罗, 克拉美罗界

Abstract:

The interference in the received power leads to the problem of the low estimation accuracy of WLAN indoor positioning, so a new method is proposed which constructs the maximum likelihood model and uses the Markov Chain Monte-Carlo sampling method to estimate position coordinates. The method considers taking the interference factor into the model, and uses the random sampling method to solve the estimation problem, which has the advantage of fast convergence and high estimate precision. Furthermore, the Cramer-Rao lower bound (CRLB) of the model is derived. In simulation experiment, the distribution of Cramer-Rao Bound in locating space is given. Finally, simulations show that the MCMC method can estimate the target location accurately. Under the same simulation conditions, the MCMC method achieves greater estimated precision and has a lower computational complexity than the Fletcher-Reeves Method (FR).

Key words: WLAN indoor positioning, likelihood model, Monte-Carlo, Cramer-Rao lower bound

中图分类号: 

  • TN911.72