西安电子科技大学学报 ›› 2016, Vol. 43 ›› Issue (3): 13-18+72.doi: 10.3969/j.issn.1001-2400.2016.03.003

• 研究论文 • 上一篇    下一篇

无限最大间隔Beta过程因子分析模型

张学峰;陈渤;王鹏辉;文伟;刘宏伟   

  1. (西安电子科技大学 雷达信号处理国家重点实验室,陕西 西安  710071)
  • 收稿日期:2015-02-10 出版日期:2016-06-20 发布日期:2016-07-16
  • 通讯作者: 张学峰
  • 作者简介:张学峰(1987-),男,西安电子科技大学博士研究生,E-mail:zxf0913@163.com.
  • 基金资助:

    国家自然科学基金资助项目(61372132,61201292);国家青年千人计划资助项目;新世纪优秀人才支持计划资助项目(NCET-13-0945);航空科学基金资助项目(20142081009);中央高校基本科研业务费专项资金资助项目(K5051302010)

Infinite max-margin Beta process factor analysis model

ZHANG Xuefeng;CHEN Bo;WANG Penghui;WEN Wei;LIU Hongwei   

  1. (National Key Lab. of Radar Signal Processing, Xidian Univ., Xi'an  710071, China)
  • Received:2015-02-10 Online:2016-06-20 Published:2016-07-16
  • Contact: ZHANG Xuefeng

摘要:

针对多模分布数据的分类问题,文中提出了一种无限最大间隔Beta过程因子分析模型.该模型利用Beta过程因子分析模型挖掘数据低维的隐含信息.同时借鉴混合专家思想,采用Dirichlet混合模型将数据在隐空间划分成“无限”个子集,并在每个子集上训练一个线性的最大间隔分类器实现全局非线性的复杂分类器.由于将数据降维、子集划分以及分类器统一在贝叶斯框架下,文中模型在充分挖掘数据结构的同时保证数据的可分性.文中采用非参数贝叶斯技术避免了模型选择问题,利用Gibbs采样技术简便有效地估计了模型参数.基于公共数据集和实测雷达高分辨距离像数据的实验验证了文中方法的有效性.

关键词: Beta过程因子分析模型, 混合专家, Dirichlet混合模型, 最大间隔分类器

Abstract:

An infinite max-margin Beta process factor analysis (IMMBPFA) model is developed to deal with the classification problem on multimodal data. In this model, BPFA is utilized to capture the latent feature of data. With the idea of mixture experts, IMMBPFA divides the data into ‘infinite’ clusters via the Dirichlet process (DP) mixture model in the low-dimensional latent space and meanwhile learns a linear max-margin classifier on each cluster to construct a complex nonlinear classifier. Since the proposed model jointly learns BPFA, clustering and max-margin classifier in a unified Bayesian framework, it exhibits superior performance in both data description and discrimination. With the help of nonparametric Bayesian inference and the Gibbs sampler, we avoid the model selection problem and can estimate the parameters simply and effectively. Based on the experimental data obtained from Benchmark and measured radar high resolution range profile (HRRP) dataset, the effectiveness of proposed method is validated.

Key words: Beta process factor analysis (BPFA), mixture-of-experts, Dirichlet process mixture(DPM) model, max-margin classifiers