西安电子科技大学学报 ›› 2016, Vol. 43 ›› Issue (3): 161-166.doi: 10.3969/j.issn.1001-2400.2016.03.028

• 研究论文 • 上一篇    下一篇

PCA预训练的卷积神经网络目标识别算法

史鹤欢;许悦雷;马时平;李岳云;李帅   

  1. (空军工程大学 航空航天工程学院,陕西 西安  710038)
  • 收稿日期:2015-01-19 出版日期:2016-06-20 发布日期:2016-07-16
  • 通讯作者: 史鹤欢
  • 作者简介:史鹤欢(1990-),男,空军工程大学博士研究生, E-mail: shihehuan1990@126.com.
  • 基金资助:

    国家自然科学基金资助项目(61379104,61372167)

Convolutional neural networks recognition algorithm based on PCA

SHI Hehuan;XU Yuelei;MA Shiping;LI Yueyun;LI Shuai   

  1. (Aeronautics and Astronautics Engineering College, Air Force Engineering Univ., Xi'an  710038, China)
  • Received:2015-01-19 Online:2016-06-20 Published:2016-07-16
  • Contact: SHI Hehuan

摘要:

针对卷积神经网络对合成孔径雷达目标识别训练在标签数据不足,平移、旋转以及复杂情况下的识别率不高问题,提出一种优化的卷积神经网络目标识别算法.为克服标签数据不足,利用主成分分析非监督训练一组特征集初始化卷积神经网络;为提高训练速度,同时避免陷入过拟合,采用线性修正函数作为非线性函数;为增强鲁棒性,同时减小下采样对特征表示的影响,引入概率最大化下采样的方式,并在卷积层后对特征进行局部对比度标准化.实验表明,与传统的卷积神经网络相比,该算法对合成孔径雷达目标具有更高的识别率,并对图像各种形变以及复杂背景具有较好的鲁棒性.

关键词: 卷积神经网络, 主成分分析, 概率最大化下采样, 线性修正函数, 局部对比度标准化

Abstract:

To improve the insufficiency of Synthetic Aperture Radar(SAR) labeled training data for Convolutional Neural Networks(CNN) and the recognition rate for large variations, a novel CNN recognition algorithm is proposed. Firstly, a set of features is extracted from the original data by unsupervised training based on PCA as the initial filter set for CNN. Secondly, in order to accelerate the training speed while avoiding over-fitting, the Rectified Linear Units(ReLU) is adopted as the non-linear function. Thirdly, to strengthen robustness and mitigate the defects of pooling upon features, a probabilistic max-pooling sampling method is introduced and local contrast normalization is exploited on features after the convolutional layer. Experiments demonstrate that our algorithm outperforms the original CNN in recognition rate and achieves better robustness for large variations and complex background.

Key words: convolutional neural network, principal component analysis, probabilistic max-pooling, rectified linear units, local contrast normalization

中图分类号: 

  • TP391.41