西安电子科技大学学报

• 研究论文 • 上一篇    下一篇

无线传感器网络中基于鲁棒优化的功率控制

乔俊峰1,2;刘三阳1;齐小刚1   

  1. (1. 西安电子科技大学 数学与统计学院,陕西 西安  710071;
    2. 南阳理工学院 数理学院,河南 南阳  473004)
  • 收稿日期:2015-07-28 出版日期:2016-10-20 发布日期:2016-12-02
  • 通讯作者: 乔俊峰
  • 作者简介:乔俊峰(1979-),女,副教授,西安电子科技大学博士研究生,E-mail:jfqiao@mail.xidian.edu.cn.
  • 基金资助:

    国家自然科学基金资助项目(61373174);广东省高等学校高层次人才资助项目(粤财教[2013]246号)

Power control in wireless sensor networks based on robust optimization

QIAO Junfeng1,2;LIU Sanyang1;QI Xiaogang1   

  1. (1. School of Mathematics and Statistics, Xidian Univ., Xi'an  710071, China;
    2. School of Mathematics and Science, Nanyang Institute of Technology, Nanyang  473004, China)
  • Received:2015-07-28 Online:2016-10-20 Published:2016-12-02
  • Contact: QIAO Junfeng1

摘要:

基于鲁棒离散优化理论与方法,设计了一种对距离不确定性具有免疫力的功率控制方法.首先,介绍了鲁棒优化的相关知识;然后,建立了鲁棒最小生成树模型进行距离不确定情形下的功率控制,并设计了基于Prim算法的求解方法.计算机仿真研究了模型中调节参数对网络性能的影响,结果表明,鲁棒解在距离不确定时得到的目标值优于确定解,而在标称距离下与最优值相差不多.因此,随着不确定性的增加,鲁棒解仅以较小的最优性损失改善了最坏情形下网络的拓扑性能.

关键词: 无线传感器网络, 功率控制, 鲁棒优化, 最小生成树

Abstract:

Topology control is a critical issue for energy efficient wireless sensor networks. Distance between sensors plays an important role in the problem of topology control in that it directly determines the accuracy of the node position. However, distance is generally affected by uncertain external factors, such as measurement error and actual interference. The actual performance of a topology control strategy can be severely influenced by distance uncertainty. Based on the robust discrete optimization theory and methodology, a power control algorithm is proposed to deal with distance uncertainty. First, related works on robust optimization is introduced. Then the problem of power control is formulated as a robust minimum spanning tree model under distance uncertainty, which is solved by Prim's algorithm. In computational experiments, the influence of the adjusting parameter on network performance is studied. Simulation results show that a robust solution can provide an improvement when the distance is uncertain at the expense of the less optimal value compared with a deterministic solution.

Key words: wireless sensor networks, power control, robust optimization, minimum spanning tree