[1] HE C Z, YEUNG K L. Ultra-large Feedback-based Switch Implementation for Data Center Networks[C]//IEEE International Conference on Communications. Piscataway: IEEE, 2015: 5485-5490.
[2] CHRYSOS N, MINKENBER C, RUDQUIST M, et al. High-radix Switches Made of Bufferless Clos Networks[C]//2015 IEEE 21st International Symposium on High Performance Computer Architecture. Piscataway: IEEE, 2015: 402-414.
[3] LIU K, YAN J, LU J, et al. Predictive Unicast and Multicast Scheduling in Onboard Buffered Crossbar Switches[J]. IEEE Communications Letters, 2016, 20(3): 498-501.
[4] Di C, MHAMDI L. Scheduling Multicast Traffic in Partially Buffered Crossbar Switches[C]//International Symposium on Computers and Communications. Piscataway: IEEE, 2013: 777-782.
[5] YU H, RUEPP S, BERGER M S, et al. Integration of Look-ahead Multicast and Unicast Scheduling for Input-queued Cell Switches[C]//2012 IEEE 13th International Conference on High Performance Switching and Routing. Piscataway: IEEE, 2012: 59-64.
[6] JIANG Y B, QIU Z L, GAO Y, et al. Multicast Support in Input Queued Switches with Low Matching Overhead[J]. IEEE Communications Letters, 2012, 16(12): 2083-2086.
[7] PAN D, YANG Y Y. FIFO-based Multicast Scheduling Algorithm for Virtual Output Queued Packet Switches[J]. IEEE Transactions on Computers, 2005, 54(10): 1283-1297.
[8] WANG W F, LEE F C, LU G L. A Shared-memory Design for Crosspoint Buffered Switches under Mixed Uni-and Multicast Traffic[C]//24th IEEE International Conference on Advanced Information Networking and Applications Workshops. Piscataway: IEEE Computer Society, 2010: 133-138. |