西安电子科技大学学报

• 研究论文 • 上一篇    下一篇

伪特权信息和SVM+

孙广玲;董勇;刘志   

  1. (上海大学 通信与信息工程学院,上海 200072)
  • 收稿日期:2015-10-26 出版日期:2016-12-20 发布日期:2017-01-19
  • 作者简介:孙广玲(1975-),女,副教授,E-mail: sunguangling@shu.edu.cn.
  • 基金资助:

    教育部科学技术研究重点资助项目(212053);上海市自然科学基金资助项目(16ZR1411100)

Pseudo-privileged information and SVM+

SUN Guangling;DONG Yong;LIU Zhi   

  1. (School of Communication and Information Engineering, Shanghai Univ., Shanghai 200072, China)
  • Received:2015-10-26 Online:2016-12-20 Published:2017-01-19

摘要:

针对只有部分训练样本拥有特权信息的特权学习,提出了伪特权信息及相应的SVM+.一方面,对于无特权信息的样本额外构造伪特权信息,使得这部分样本的松弛变量可在修正空间中预测,从而有效地提高了模型泛化能力.可用信息和随机特征都是有效的伪特权信息.另一方面,将真正特权信息用伪特权信息取代,使得全部训练样本的松弛变量都在惟一的修正空间中预测.在实践中发现,至少对于某些真正的特权信息和二分类问题来说,使用一个修正空间可获得更优的泛化能力.在手写数字和人脸表情识别问题上进行的实验结果显示,采用伪特权信息的SVM+具备一定的优势.

关键词: 特权学习, 伪特权信息, SVM+

Abstract:

In machine learning, learning using privileged information(LUPI) tries to improve the generalization of the classifier by leveraging information only available during learning. In the scenario of privileged information(PI) possessed by partial training samples, pseudo-privileged information(PPI) and SVM+are investigated. The proposed models depend on two formulations. One is to construct PPI for the samples without PI alone. The formulation enables slacks of such samples predicted in the correcting space with an ultimate goal of improving the generalization of the classifier. Available information and random features are proved to be effective options for PPI. The other is to replace the genuine PI with PPI so as to predict the slacks of all training samples in the unique correcting space. It is confirmed that at least for certain genuine PI and two categories classification task, the latter one is capable of obtaining better generalization performance. Experiments are performed on written digits and facial expression recognition. The results have validated advantages of SVM+using PPI.

Key words: learning using privileged information, pseudo-privileged information, SVM+