西安电子科技大学学报

• 研究论文 • 上一篇    

结合分层字典学习和空谱信息的多光谱图像去噪

刘帅;马文萍;杨淑媛;陈璞花   

  1. (西安电子科技大学 智能感知与图像理解教育部重点实验室,陕西 西安 710071)
  • 收稿日期:2016-08-02 出版日期:2017-08-20 发布日期:2017-09-29
  • 作者简介:刘帅(1987- ), 女, 西安电子科技大学博士研究生, E-mail: shliu_122908@yahoo.com
  • 基金资助:

    国家重点基础研究发展计划(973计划)资助项目(2013CB329402);国家自然科学基金重大研究计划资助项目(91438103,91438201)

Multispectral imagery denoising using hierarchical dictionary learning with spatial-spectral information

LIU Shuai;MA Wenping;YANG Shuyuan;CHEN Puhua   

  1. (Ministry of Education Key Lab. of Intelligent Perception and Image Understanding, Xidian Univ., Xi'an 710071, China)
  • Received:2016-08-02 Online:2017-08-20 Published:2017-09-29

摘要:

针对多光谱图像中存在的多种噪声,提出一种利用空谱信息和分层字典学习的降噪方法.该方法依据相邻波段之间的结构相关性划分多光谱图像波段;并对得到的每个波段子集使用分层字典学习框架进行统计建模.通过引入高斯噪声项和稀疏噪声项,来有效地表达图像噪声特性;同时,应用吉布斯采样求解统计模型,以实现降噪的目的.在两幅真实多光谱图像数据上的仿真实验表明,该方法能够有效地抑制多光谱图像中的多种噪声,且能够准确地保留图像结构和细节信息.

关键词: 分层字典学习, 去噪, 空谱信息, 多光谱图像

Abstract:

A novel denoising method is proposed for the multispectral imagery by combining the hierarchical dictionary learning and the spatial-spectral information. First, the band-subset segmentation is developed by exploiting the highly structural correlations between adjacent bands. Second, the hierarchical dictionary learning model with spatial information is applied to sequentially denoise each band-subset. The noise characteristics of the multispectral images is well depicted by decomposing the noise term into the Gaussian noise term and the sparse noise term, and Gibbs sampling is utilized to solve the model. The effectiveness of the proposed method is compared with that of the state-of-the-art approaches and validated on two multispectral images.

Key words: hierarchical dictionary learning, denoising, spatial-spectral information, multispectral images