西安电子科技大学学报

• 研究论文 • 上一篇    下一篇

利用FCM对静态图像进行交通状态识别

崔华;袁超;魏泽发;李盼侬;宋鑫鑫;纪宇;刘云飞   

  1. (长安大学 信息工程学院,陕西 西安 710064)
  • 收稿日期:2016-12-12 出版日期:2017-12-20 发布日期:2018-01-18
  • 作者简介:崔华(1977-),女,教授,博士,E-mail: huacui@chd.edu.cn
  • 基金资助:

    国家自然科学基金资助项目(61572083);陕西省自然科学基金资助项目(2015JQ6230);中央高校基本科研业务费专项资金资助项目(310824152009)

Traffic state recognition using static images and FCM

CUI Hua;YUAN Chao;WEI Zefa;LI Pannong;SONG Xinxin;JI Yu;LIU Yunfei   

  1. (School of Information Engineering, Chang'an Univ., Xi'an, China)
  • Received:2016-12-12 Online:2017-12-20 Published:2018-01-18

摘要:

对交通状态进行准确识别可以主动预警将要进入本路段的驾驶员避开拥堵,以免加重拥堵程度,同时也是科学制定主动交通管理决策的基础,有利于及时疏导拥堵,提高道路运行效率,节能减排.首先从交通监控视频中采集图像,标注道路为兴趣区,并对道路图像做角度和尺度的归一化处理;然后提取兴趣区图像的平均梯度、角点个数和长边缘比例3个特征;最后,利用模糊C均值聚类算法将图片所呈现的交通状态分为畅通和拥堵两种状态.实验结果表明,文中算法可以有效识别图像中的交通状态,正确率达到了94%以上,而且较基于视频的交通状态识别方法,该方法也大大降低了实现成本.

关键词: 交通状态识别, 交通图像, 模糊C均值聚类, 角点个数, 长边缘比例

Abstract:

Accurate recognition of the traffic condition can proactively alert drivers who will enter the congested road to avoid congestion, so that the degree of congestion will not be increased. And it is also the basis to make scientific decision on active traffic managements, and conducive to alleviate congestion, improve the traffic efficiency, save energy and reduce emission. In this paper, the traffic surveillance videos are sampled every three minutes to build static image database, and the road area is marked as the region of interest (ROI), and then ROI images are normalized in terms of angle and scale. The three image features in ROI, i.e., average gradient, corner and long edge number, are then extracted. Finally, the fuzzy C-means clustering (FCM) method is used to classify the traffic condition into two classifications, i.e., flowing traffic and congestion. Experimental results show that the proposed algorithm can effectively identify the traffic condition involved in the image by the accuracy of 98%. Moreover, compared with the video-based approaches, this method greatly reduces the implementation cost.

Key words: traffic condition recognition, traffic image, fuzzy C-means clustering, corner, long edge number