[1] TIAN S, FAN X, LI Z, et al. Orthogonal-gradient Measurement Matrix Construction Algorithm[J]. Chinese Journal of Electronics, 2016, 25(1):81-87.
[2] QIN S, ZHANG Y D, AMIN M G, et al. Generalized Coprime Sampling of Toeplitz Matrices for Spectrum Estimation[J]. IEEE Transactions on Signal Processing, 2017, 65(1): 81-94.
[3] CANDES E, ROMBERG J. Sparsity and Incoherence in Compressive Sampling[J]. Inverse Problems, 2007, 23(3):969-985.
[4] LIU W J. Some Quantum Estimates of Hermite-Hadamard Inequalities for Convex Functions[J]. Journal of Applied Analysis & Computation, 2017, 7(2): 501-522.
[5] MAHROUS H, WARD R. Block Sparse Compressed Sensing of Electroencephalogram (EEG) Signals by Exploiting Linear and Non-linear Dependencies[J]. Sensors, 2016, 16(2): 201.
[6] LIN Y M, ZHANG J F, GENG J, et al. Structural Scrambling of Circulant Matrices for Cost-effective Compressive Sensing[J]. Journal of Signal Processing Systems, 2016: 1-13.
[7] DUMER I. Recursive Decoding and Its Performance for Low-rate Reed-Muller Codes[J]. IEEE Transactions on Information Theory, 2004, 50(5): 811-823.
[8] 郭海燕, 王天荆, 杨震. DCT域的语音信号自适应压缩感知[J]. 仪器仪表学报, 2010, 31(6):1262-1268.
GUO Haiyan, WANG Tianjin, YANG Zhen. Adaptive Speech Compressed Sensing in the DCT Domain[J]. Chinese Journal of Scientific Instrument, 2010, 31(6): 1262-1268.
[9] ABTAHI A, MODARRES-HASHEMI M, MARVASTI F, et al. Power Allocation and Measurement Matrix Design for Block CS-based Distributed MIMO Radars[J]. Aerospace Science and Technology, 2016, 53(1): 128-135.
[10] TONG S, LIU B, GUO Q, et al. Multiple-rate Codes from Block Markov Superposition Transmission of First-order Reed-Muller and Extended Hamming Codes[J]. Electronics Letters, 2016, 52(18): 1531-1533.
[11] MASOUMIAN S H S, TAZEHKAND B M. On Joint Compressed Sensing Based Channel Estimation and Nonuniform PTS PAPR Reduction without Side Information[J]. National Academy Science Letters, 2016, 39(6): 445-449.
[12] JI S, XUE Y, CARIN L. Bayesian Compressive Sensing[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2346-2356.
[13] HUANG B C, WAN J W, NIAN Y J. Measurement Matrix Design for Hyperspectral Image Compressive Sensing[C]//Proceedings of the 2015 International Conference on Signal Processing. Piscataway: IEEE, 2015: 1111-1115.
[14] BOUCHHIMA B, AMARA R, ALOUANE M T H. Design of Optimal Matrices for Compressive Sensing: Application to Environmental Sounds[C]//Proceedings of the 2015 23rd European Signal Processing Conference. Piscataway: IEEE, 2015: 130-134.
[15] SINTUNAVARAT W. The Upper Bound Estimation for the Spectral Norm of r-circulant and Symmetric r-circulant Matrices with the Padovan Sequence[J]. Journal of Nonlinear Science & Applications, 2016, 9(1): 92-101.
[16] 张君昌, 刘海鹏, 樊养余. 一种自适应时移与阈值的DCT语音增强算法[J]. 西安电子科技大学学报, 2014, 41(6): 155-159.
ZHANG Junchang, LIU Haipeng, FAN Yangyu. Speech Enhancement Method Using Self-adaptive Time-shift and Threshold Discrete Cosine Transform[J]. Journal of Xidian University, 2014, 41(6): 155-159.
[17] 王峰, 向新, 易克初, 等. 支撑驱动的非凸压缩感知恢复算法[J]. 西安电子科技大学学报, 2016, 43(2): 1-5.
WANG Feng, XIANG Xin, YI Kechu, et al. Support Driven Recovery Algorithm for Non-convex Compressed Sensing[J]. Journal of Xidian University, 2016, 43(2): 1-5.
[18] HAUPT J, BAJWA W U, RAZ G, et al. Toeplitz Compressed Sensing Matrices with Applications to Sparse Channel Estimation[J]. IEEE Transactions on Information Theory, 2010, 56(11): 5862-5875.
[19] SUN J M, WANG S, DONG Y. Sparse Block Circulant Matrices for Compressed Sensing[J]. IET Communications, 2013, 7(13): 1412-1418.
[20] 孙晶明. 压缩感知中观测矩阵的研究[D]. 武汉: 华中科技大学, 2013. |