西安电子科技大学学报 ›› 2018, Vol. 45 ›› Issue (6): 144-149.doi: 10.3969/j.issn.1001-2400.2018.06.024

• 研究论文 • 上一篇    下一篇

NRCNN与角度度量融合的人脸识别方法

梁晓曦;蔡晓东;王萌;库浩华   

  1. (桂林电子科技大学 信息与通信学院,广西 桂林 541004)
  • 收稿日期:2018-01-26 出版日期:2018-12-20 发布日期:2018-12-20
  • 通讯作者: 蔡晓东(1971-), 男, 教授, E-mail: caixiaodong@guet.edu.cn
  • 作者简介:梁晓曦(1991-), 男, 桂林电子科技大学硕士研究生, E-mail: liangxiaoxi888@126.com
  • 基金资助:
    2016年广西物联网技术及产业化推进协同创新中心资助项目(WLW200601); 2016年“认知无线电与信息处理”省部共建教育部重点实验室基金资助项目(CRKL160102)

Face recognition method for integrating the nested residual CNN and angular metric

LIANG Xiaoxi;CAI Xiaodong;WANG Meng;KU Haohua   

  1. (School of Information and Communication, Guilin Univ. of Electronic Technology, Guilin 541004, China)
  • Received:2018-01-26 Online:2018-12-20 Published:2018-12-20

摘要: 常见的卷积神经网络通常使用分类损失来进行可分离的特征学习,在某些情况下存在特征的可区分性不足的问题,而一些改进的方法复杂度较高.为了在较低的复杂性下仍能保证较高的准确率,提出了一种基于嵌套残差卷积神经网络与角度度量的人脸识别方法.首先,设计了一种新颖的基于嵌套残差模块的人脸特征提取网络,通过多特征图融合的方式提取更丰富的特征;其次,使用了一种基于权值标准化的角度度量方法,通过对最后一个全连接层的权值进行标准化的操作来增强特征区分性.在网络训练时,结合上述两种方法使得学习到的特征满足最大类内距离小于最小类间距离的原则。实验表明,该方法在人脸标记数据库上测试准确率达到99.03%,相较于使用分类损失和其他度量学习的方法,该方法仅使用了单个网络并能在保证较高准确率的情况下付出更小的计算代价.

关键词: 嵌套残差卷积神经网络, 权值标准化, 角度度量, 人脸识别

Abstract: Softmax loss is usually used in convolution neural networks for feature learning, but features obtained are not discriminative enough in some cases. Traditional methods for trying to solve this problem come with additional computational complexity. A face recognition method for integrating the nested residual convolution neural network and angle metric is proposed. First, a novel feature extraction network based on the nested residual block is designed to extract various features by integrating feature maps. Then, a method of angular metric based on weight normalization is utilized. The discrimination of features is enhanced by normalizing the weights of the last fully connected layer. The learned features can satisfy the condition that the maximum intra-class distance is less than the minimum inter-class distance by combining two methods mentioned above for training. Experimental results indicate that this method leads to an accuracy of 99.03% on the LFW(Labeled Faces in the Wild). The proposed algorithm only contains a single network and provides a higher accuracy and a lower computational cost than those methods using softmax loss and other metric learning.

Key words: nested residual convolutional neural networks, weight normalization, angular metric, face recognition

中图分类号: 

  • TP183