J4
• 研究论文 • 上一篇 下一篇
石智1,2;宋国乡1
(1. 西安电子科技大学 理学院,陕西 西安 710071;2. 西安建筑科技大学 理学院,陕西 西安 710055)
收稿日期:
修回日期:
出版日期:
发布日期:
Nonharmonic wavelet basis and approximation function with time-frequency localization
SHI Zhi1,2;SONG Guo-xiang1
Received:
Revised:
Online:
Published:
摘要: 当正交小波基ψm,n=2-m/2 ψ(2-m x-n),m,n∈Z的整平移出现扰动而变为λn(|λn-n|<1)时,该小波基可构成L2(R)空间的Riesz基ψm,λm=2-m/2 ψ(2-m x-λn). 这种小波基称为非调和小波基. 对具有时频局部化的函数f(x),可用这种小波逼近,从而推广了Dauberchies相应的结果.
关键词: 非调和小波, 时频局部化, 基逼近
Abstract:
Wavelets are functions generated by translating and dilating a function or a finite number of functions. In this paper, we consider that the orthonormal basis (ψm,n )m,n∈Z for L2(R) is replaced by the nonharmonic wavelet basis ψm,λm=2-m/2 ψ(2-m x-λn), m,n∈Z, (|λn-n|≤1 such that f∈L2(R) has nonharmonic wavelet expression f(x)=∑m,n cm,nψm,λm·(ψm,n )m,n∈Z is used to approximate function f which is "essentially localized" in time-frequency. The result in Dauberchies is developed.
Key words: nonharmonic wavelet basis, time-frequency localization, essentially localized
中图分类号:
石智1;2;宋国乡1. 非调和小波基与时频局部化函数的逼近[J]. J4, 2003, 30(2): 271-276.
SHI Zhi1;2;SONG Guo-xiang1.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://journal.xidian.edu.cn/xdxb/CN/
https://journal.xidian.edu.cn/xdxb/CN/Y2003/V30/I2/271
Cited