J4

• 研究论文 • 上一篇    下一篇

非调和小波基与时频局部化函数的逼近

石智1,2;宋国乡1

  

  1. (1. 西安电子科技大学 理学院,陕西 西安 710071;
    2. 西安建筑科技大学 理学院,陕西 西安 710055)

  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2003-04-20 发布日期:2003-04-20

Nonharmonic wavelet basis and approximation function with time-frequency localization

SHI Zhi1,2;SONG Guo-xiang1

  

  1. (1. School of Science, Xidian Univ., Xi’an 710071, China;
    2. School of Science, Xi'an Univ. of Arch. & Tech., Xi'an 710055, China)
  • Received:1900-01-01 Revised:1900-01-01 Online:2003-04-20 Published:2003-04-20

摘要: 当正交小波基ψm,n=2-m/2 ψ(2-m x-n),m,n∈Z的整平移出现扰动而变为λn(|λn-n|<1)时,该小波基可构成L2(R)空间的Riesz基ψm,λm=2-m/2 ψ(2-m x-λn). 这种小波基称为非调和小波基. 对具有时频局部化的函数f(x),可用这种小波逼近,从而推广了Dauberchies相应的结果.

关键词: 非调和小波, 时频局部化, 基逼近

Abstract:

Wavelets are functions generated by translating and dilating a function or a finite number of functions. In this paper, we consider that the orthonormal basis (ψm,n )m,n∈Z for L2(R) is replaced by the nonharmonic wavelet basis ψm,λm=2-m/2 ψ(2-m x-λn), m,n∈Z, (|λn-n|≤1 such that f∈L2(R) has nonharmonic wavelet expression f(x)=∑m,n cm,nψm,λm·(ψm,n )m,n∈Z is used to approximate function f which is "essentially localized" in time-frequency. The result in Dauberchies is developed.

Key words: nonharmonic wavelet basis, time-frequency localization, essentially localized

中图分类号: 

  • O174.2