J4
• 研究论文 • 上一篇 下一篇
孙君顶1;毋小省2;周利华1
(1. 西安电子科技大学 多媒体技术研究所, 陕西 西安 710071;2. 焦作大学 计算机系, 河南 焦作 454000)
收稿日期:
修回日期:
出版日期:
发布日期:
Engropy-based image retrieval
SUN Jun-ding1;WU Xiao-sheng2;ZHOU Li-hua1
Received:
Revised:
Online:
Published:
摘要: 在分析了现有的基于颜色、形状、纹理等基于内容的图像检索算法的基础上,提出了一种新的基于信息熵的图像检索算法,即利用图像的信息熵来描述图像的特性,结合网格描述符及图像颜色信息,采用图像单元熵构成的熵矩阵特征值矢量作为图像的特征描述,并提出了利用特征矢量进行图像检索的检索算法.实验结果表明,该算法具有尺度不变性、旋转不变性,并且对于颜色直方图不同但有视觉一致性的图像也有较好的检索效果.
关键词: 图像检索, 单元熵, 基于信息熵检索, 网络描述符
Abstract: The content based image retrieval(CBIR) on colour, shape and texture is analyzed and an entropy-based image retrieval(EBIR) algorithm is proposed. Entropy is introduced to extract the features of the image. With the combination of colour property and grid descriptor(GD), and entropy eigenvalue vector descriptor is brought forward for the description of the image. Using teh entropy eigenvalue vector, we can simply retrieve the relevant images from the database. It is shown through performance experiments that this algorithm is of scale invariance and rotation invariance to some extent. Satisfactory retrieval results can also be observed for the image with analogical vision but different colour histogram.
Key words: image retrieval, unit entropy, entropy-based image retrieval, grid descriptor
中图分类号:
孙君顶1;毋小省2;周利华1. 基于信息熵的图像检索[J]. J4, 2004, 31(2): 223-228.
SUN Jun-ding1;WU Xiao-sheng2;ZHOU Li-hua1.
0 / / 推荐
导出引用管理器 EndNote|Reference Manager|ProCite|BibTeX|RefWorks
链接本文: https://journal.xidian.edu.cn/xdxb/CN/
https://journal.xidian.edu.cn/xdxb/CN/Y2004/V31/I2/223
Cited