J4

• 研究论文 • 上一篇    下一篇

一类量子循环码的构造方法

李卓;邢莉娟;王新梅
  

  1. (西安电子科技大学 综合业务网理论与关键技术国家重点实验室,陕西 西安 710071)
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2007-04-20 发布日期:2007-04-20

A construction method for a family of quantum cyclic codes

LI Zhuo;XING Li-juan;WANG Xin-mei
  

  1. (State Key Lab. of Integrated Service Networks, Xidian Univ., Xi′an 710071, China)
  • Received:1900-01-01 Revised:1900-01-01 Online:2007-04-20 Published:2007-04-20

摘要: 寻找量子稳定子码的问题可以转化为寻找GF(4)上厄米内积自正交的经典线性码的问题;对于GF(4)上的经典循环码,它是厄米内积自正交的,当且仅当它的对偶码的生成多项式是其生成多项式的因子.利用这一关系,通过寻找生成多项式满足该条件的经典循环码,构造出一类量子循环码,并详细给出了该类码的一些例子.

关键词: 量子循环码, 量子稳定子码, GF(4)上循环码, 厄米内积, 自正交

Abstract: The problem of finding stabilizer quantum-error-correcting codes can be transformed into the problem of finding classical self-orthogonal linear codes over the Galois field GF(4) under a Hermitian inner product. A classical cyclic code over the field GF(4) is self-orthogonal with respect to the Hermitian inner product iff the generator polynomial of its dual code is a factor of its generator polynomial. Based on this connection, a class of quantum cyclic codes is constructed by finding corresponding classical cyclic codes. Some examples are also given in detail.

Key words: quantum cyclic codes, stabilizer quantum-error-correcting codes, cyclic codes over the field GF(4), Hermitian inner product, self-orthogonal

中图分类号: 

  • TN911.2