J4 ›› 2009, Vol. 36 ›› Issue (3): 406-409.

• 研究论文 • 上一篇    下一篇

一种快速的渐进边增长算法

陈霖;冯大政   

  1. (西安电子科技大学 雷达信号处理重点实验室,陕西 西安  710071)
  • 收稿日期:2008-05-12 修回日期:2008-06-29 出版日期:2009-06-20 发布日期:2009-07-04
  • 基金资助:

    国家自然科学基金资助(60672128)

Fast progressive edge-growth algorithm

CHEN Lin;FENG Dazheng   

  1. (Key Lab. of Radar Signal Processing, Xidian Univ., Xi'an  710071, China)
  • Received:2008-05-12 Revised:2008-06-29 Online:2009-06-20 Published:2009-07-04

摘要:

提出了一种构造低密度校验码的渐进边生长算法的快速实现方法.该方法使用平衡搜索树对校验节点进行排序,并且在边生长过程中对Tanner图的变化进行跟踪.平衡搜索树使对特定校验节点的查找具有对数复杂度,且通过跟踪Tanner图的变化可大大减少对Tanner图进行树形展开操作的次数.相对于基于标志位的实现方法,基于平衡搜索树的渐进边增长算法有效地降低了计算复杂度.以构造一个码长为104的低密度校验码为例,基于平衡搜索树的快速渐进边增长算法的用时为基于标志位方法的1/5.

关键词: 低密度校验码, 渐进边增长算法, 平衡搜索树

Abstract:

A fast implementation of the Progressive Edge-Growth (PEG) algorithm for constructing low density parity check (LDPC) codes is presented. A balanced search tree is used to sort the check nodes and the variety of the Tanner graph is tracked during the edge growth process. The balanced search tree makes the search for a specified check node have the logarithmic complexity, and the number of times of the tree-expanding of the Tanner graph is significantly reduced by tracing the variety of the Tanner graph. Compared with the indicator-based implementation, the method presented here reduces the complexity effectively. Taking the construction of an LDPC code with length 104 as an example, the time used by the balanced-search-tree based implementation is only about 20 percent of that used by the indicator-based approach.

Key words: low density parity check (LDPC) codes, progressive-edge-growth (PEG) algorithm, balanced search trees

中图分类号: 

  • TN911.22