J4 ›› 2011, Vol. 38 ›› Issue (5): 121-128+146.doi: 10.3969/j.issn.1001-2400.2011.05.020

• 研究论文 • 上一篇    下一篇

遥感图像几何校正的支持向量机算法研究

厍向阳1;李崇贵2;姚顽强2   

  1. (1. 西安科技大学 计算机科学与技术学院,陕西 西安  710054;
    2. 西安科技大学 测绘科学与技术学院,陕西 西安  710054)
  • 收稿日期:2010-08-20 出版日期:2011-10-20 发布日期:2012-01-14
  • 通讯作者: 厍向阳
  • 作者简介:厍向阳(1968-),男,副教授,博士,E-mail: xiangyangshe@sohu.com
  • 基金资助:

    国家自然科学基金资助项目(30872023);陕西省自然科学基金资助项目(2009JM7007);教育部科学技术研究重点资助项目(2009122);陕西省教育厅专项科研计划资助项目(08JK354)

Research on the geometric correction algorithm for the remote sensing image by a support vector machine

SHE Xiangyang1;LI Chonggui2;YAO Wanqiang2   

  1. (1. Computer Sci. & Tech. College, Xi'an Univ. of Sci. and Tech., Xi'an  710054, China;
    2. Surveying and Mapping Sci. & Tech. College,Xi'an Univ. of Sci. and Tech., Xi'an  710054, China)
  • Received:2010-08-20 Online:2011-10-20 Published:2012-01-14
  • Contact: SHE Xiangyang

摘要:

针对目前遥感图像几何校正算法存在的不足,提出了一种新的遥感图像几何校正算法.引入支持向量机理论和方法,结合遥感图像近似几何校正基本原理,提出遥感图像几何校正的支持向量机算法和实现步骤|选择实验区,使用差分GPS实测地面控制点坐标,使用遥感图像处理软件量测地面控制点对应的影像坐标|使用聚类算法分别选择不同数量的控制点作为遥感图像几何校正的控制点,其余控制点作为检查点|分别使用近似几何校正算法、神经网络和支持向量机算法进行遥感图像的几何校正,并进行校正误差比较分析.算法测试表明:遥感图像几何校正的支持向量机算法具有校正误差小、泛化能力强等特点.

关键词: 遥感图像, 图像几何校正, 支持向量机(SVM), 最小二乘法(LSM), 误差比较

Abstract:

Facing the disadvantages of geometric correction algorithm for the remote sensing image at present,a new algorithm is studied and we put forward the geometric correction algorithm and solving steps for the remote sensing image based on SVM, introduce the SVM theory and approach and adopt the essence theory of the remote sensing image approximate geometric correction. One testing region is selected, the ground control points coordinates and altitudes are surveyed by differential GPS, and the coordinates of the ground control points in the remote sensing image are measured with image processing software. We select a varying number of control points to correct the remote sensing image in the geometrical plain, and use other control points as testing points by the cluster algorithm in all the ground control points. We carry out remote sensing image geometric correction by the approximate geometric correction , the neural network model and the SVM algorithms, analyze and compare correction precision. Algorithm testing show that the algorithm for the SVM has good correction precision and generalizing ability. The algorithm for the SVM supports remote sensing application to develop the quantitative and accurate technique, and enlarges the geometric correction approach.

Key words: remote sensing image, image geometric correction, support vector machine(SVM), least squares method(LSM), correction precision