西安电子科技大学学报

• 研究论文 • 上一篇    下一篇

TDOA中的修正牛顿及泰勒级数方法

房嘉奇;冯大政;李进   

  1. (西安电子科技大学 雷达信号处理国家重点实验室,陕西 西安 710071)
  • 收稿日期:2015-10-11 出版日期:2016-12-20 发布日期:2017-01-19
  • 作者简介:房嘉奇(1984-),男,西安电子科技大学博士研究生,E-mail: fangjiaqi123@hotmail.com.
  • 基金资助:

    国家自然科学基金资助项目(61271293)

Research on modified Newton and Taylor-series methods in TDOA

FANG Jiaqi;FENG Dazheng;LI Jin   

  1. (National Key Lab. of Radar Signal Processing, Xidian Univ., Xi'an 710071, China)
  • Received:2015-10-11 Online:2016-12-20 Published:2017-01-19

摘要:

在多站无源时差定位系统模型下,泰勒级数算法和牛顿算法在较差初始值条件下容易出现迭代发散问题.针对这一问题,提出了基于修正泰勒级数法和牛顿法的时差定位算法.该方法对于较差初始值引起的病态海森矩阵,运用正则化理论中的吉洪诺夫法或衰减奇异值分解法进行修正,其中控制海森矩阵修正量的重要的正则化参数由著名的L曲线理论确定.实验结果证明:相对于原泰勒级数及牛顿算法,经过改进后的算法对于较差的初始值,具有较高的概率使迭代算法的解稳健地收敛到目标的真实位置,并拥有较强的能力移除局部最小值;相对于时差定位模型下的一些广泛应用的线性解法,也成为闭式解法,在低信噪比环境下具有更高的定位精度.

关键词: 无源定位, 时差定位, 修正泰勒级数算法, 修正牛顿算法, 正则化算法

Abstract:

In the Time Difference Of Arrival (TDOA) source localization model, based on the Taylor-series (TS) method and Newton (NT) method, this paper presents the Modified Taylor-series(MTS) method and the Modified Newton method(MNT), which solve the critical convergent problem caused by the bad initial value in the original algorithms. The proposed algorithms modify the ill-condition Hessian matrix caused by the bad initial value using the Tikhonov (TI) or the Diagonal Singular Value Decomposition technique (DSVD) in the Regularization theory. The regularization parameter which controls the properties of the regularized solution is determined by the L-curve method. Simulation results show that compared with the TS and NT methods, the proposed methods ensure that the solution of the iterative methods converges on the source location, improves the convergent probability and has a better capability to remove the local minima. The proposed methods also give superior performances of the location accuracy comparing with the closed-form algorithms in low SNR environment.

Key words: source localization, time-difference-of-arrival, modified Taylor-series method, modified Newton method, regularization method