西安电子科技大学学报 ›› 2019, Vol. 46 ›› Issue (1): 93-97.doi: 10.19665/j.issn1001-2400.2019.01.015

• • 上一篇    下一篇

围栏的人类活动识别优化算法

胡科路1,2,王营冠1   

  1. 1. 中国科学院 上海微系统与信息技术研究所,上海 200050
    2. 中国科学院大学 微电子学院,北京 100049
  • 收稿日期:2018-06-28 出版日期:2019-02-20 发布日期:2019-03-05
  • 作者简介:胡科路(1982-),男,中国科学院上海微系统与信息技术研究所博士研究生,E-mail:kl. hu@yahoo.com

Fence human activity recognition optimized algorithm

HU Kelu1,2,WANG Yingguan1   

  1. 1. Chinese Academy of Sciences, Shanghai Institute of Microsystem and Information Technology,Shanghai 200050, China
    2. University of Chinese Academy of Sciences, School of Microelectronics,Beijing 100049, China
  • Received:2018-06-28 Online:2019-02-20 Published:2019-03-05

摘要:

为了有效地检测围栏上的人类活动,对已有的使用神经网络的围栏人类活动识别系统进行了优化,提出多级识别、多节点融合判断等优化算法。多级识别算法通过初级识别排除掉了大量无活动时的背景数据,降低了上传的数据量,提升了下一级的识别准确率;多节点融合算法通过融合地理位置相邻的节点的识别结果,提升了结果的可靠性。基于小型围栏环境的实地数据,通过实验仿真验证了算法的有效性。优化算法的数据传输速率、数据传输总量都远小于基准算法;多节点融合算法去除掉了67.7%的冗余识别结果。

关键词: 惯性传感器, 围栏, 人类活动检测, 神经网络

Abstract:

In order to effectively recognize the human activities on a fence, we optimize the original human activity recognition system by proposing two algorithms: multi-level classification and multi-node fusion. The multi-level classification algorithm eliminates background data without activities in first level classification, reduces the amount of transferred data, and improves the accuracy of the next level. The multi-node fusion algorithm improves the reliability of the results by merging the recognition results of the neighboring nodes. Based on the data of experimental environment, the effectiveness of the algorithm is verified. The data transfer rate and data transmission amount of the multi-level classification algorithm are much lower than those of the benchmark algorithm. The multi-node fusion algorithm removes the redundancy recognition results by up to 67.7%.

Key words: inertial sensor, fence, human activity recognition, neural network

中图分类号: 

  • TP391