西安电子科技大学学报 ›› 2020, Vol. 47 ›› Issue (1): 18-23.doi: 10.19665/j.issn1001-2400.2020.01.003

• • 上一篇    下一篇

长约束非递归系统卷积码的盲识别

王甲峰,胡茂海,蒋鸿宇,漆钢   

  1. 中国工程物理研究院 电子工程研究所,四川 绵阳 621999
  • 收稿日期:2019-10-09 出版日期:2020-02-20 发布日期:2020-03-19
  • 作者简介:王甲峰(1974—),男,副研究员,E-mail:wangjiafeng@caep.cn
  • 基金资助:
    NSAF联合基金(11176005)

Blindrecognition of the long constrained non-recursive systematic convolutional code

WANG Jiafeng,HU Maohai,JIANG Hongyu,QI Gang   

  1. Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China
  • Received:2019-10-09 Online:2020-02-20 Published:2020-03-19

摘要:

针对长约束非递归系统卷积码识别性能随约束长度增加而迅速恶化的问题,提出一种基于码型转换的识别方法。该方法适用于1/2长约束非递归系统卷积码及以其为母码的(n-1)/n删除卷积码。首先根据编码原理,利用编码数据构造一种码长约为原卷积码约束长度1/n的线性分组码;然后求取该线性分组码的校验矩阵,进而从校验矩阵中重构原卷积码的生成多项式。对IESS309中涉及到的两种长约束非递归系统卷积码进行仿真试验。相对于现有方法,当码率为1/2时,识别性能约改善了1 dB;当码率为2/3和3/4时,改善程度均超过了2 dB。仿真结果表明,与现有方法相比,所提方法具有更好的识别性能。

关键词: 非递归系统卷积码, 删除卷积码, 线性分组码, 约束长度, 生成多项式

Abstract:

A coding parameters identification method is proposed, which is suitable for long constrained non-recursive systematic convolutional codes with a code rate of 1/2 and (n-1)/n obtained by puncturing the 1/2 code as the mother code. First, according to the coding principle, a linear block code with a code length of about 1/n of the original convolutional code constrained length is constructed by using the coding data; then, the check matrix of the linear block code is obtained, and the generator polynomial of the original convolutional code is reconstructed from the check matrix. Simulation experiments are carried out for two convolutional codes involved in IESS309. Compared with the existing method, when the code rate is 1/2, the recognition performance is improved by about 1dB; when the code rate is 2/3 and 3/4, the improvement is more than 2dB. Simulation results show that the proposed method is more effective than the existing method.

Key words: non-recursive systematic convolutional code, punctured convolutional code, linear block code, contrained length, generator polynomial

中图分类号: 

  • TN919