西安电子科技大学学报 ›› 2020, Vol. 47 ›› Issue (2): 108-117.doi: 10.19665/j.issn1001-2400.2020.02.015

• • 上一篇    下一篇

一种卫星影像RPC参数的HEIV估计方法

周瑜1,2,胡莘1,2,曹锴郎3(),周拥军4,李云松3   

  1. 1.信息工程大学 地理空间信息学院,河南 郑州 450001
    2.西安测绘研究所 地理信息工程国家重点实验室,陕西 西安 710054
    3.西安电子科技大学 综合业务网理论及关键技术国家重点实验室,陕西 西安 710071
    4.上海交通大学 船舶海洋与建筑工程学院,上海 200240
  • 收稿日期:2019-09-29 出版日期:2020-04-20 发布日期:2020-04-26
  • 通讯作者: 曹锴郎
  • 作者简介:周瑜(1982—),男,助理研究员,E-mail:hb48_zy@163.com
  • 基金资助:
    国防科技重点实验室基金(6142411184413);创新人才推进计划(2017KJXX-50)

Satellite image RPC parameters estimation method using the heteroscedastic errors-in-variables model

ZHOU Yu1,2,HU Xin1,2,CAO Kailang3(),ZHOU Yongjun4,LI Yunsong3   

  1. 1.Institute of Surveying and Mapping, Information Engineering University, Zhengzhou 450001, China
    2.State Key Laboratory of Geographic Information Engineering, Xi’an Research Institute of Surveying and Mapping, Xi’an 710054, China
    3.State Key Laboratory of Integrated Service Network, School of Telecommunications Engineering, Xidian University, Xi’an 710071, China
    4.School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2019-09-29 Online:2020-04-20 Published:2020-04-26
  • Contact: Kailang CAO

摘要:

由于卫星影像的定位精度主要受卫星影像有理多项式参数的估计精度影响,而现有算法中通常采用像点补偿或利用地面控制点改正的方法,未考虑设计矩阵元素的误差特性,存在系统误差剔除不完全、参数估计精度不高等问题。考虑到模型系统误差的影响,提出了一种异方差估计方法。首先建立了设计矩阵元素的随机模型,对系统特性进行更精准的描述;然后将设计矩阵元素的系统偏差考虑在内,采用马氏距离构建最小二乘模型,并使用广义特征值方法进行参数求解,从理论上降低了模型的系统误差。在天绘一号不同地形影像上的实验结果表明,新算法在影像纠正精度上较传统方法提升36倍以上,且精度一致性优良,对提高有理多项式参数估计和卫星影像定位精度具有重要意义。

关键词: 有理多项式参数, 异方差估计, 马氏距离, 广义特征值

Abstract:

The positioning accuracy of a satellite image is mainly affected by the estimation accuracy of the rational polynomial coefficients (RPCs). Image point compensation or ground control point correction methods are usually used in the existing algorithms. Because the error characteristics of the design matrix elements are not considered, there are problems such as incomplete systematic error elimination and low parameter estimation accuracy. Considering the influence of the model systematic error, a heteroscedastic estimation method is proposed in this paper. First, the random model of matrix elements is established in the algorithm to describe the system characteristics more accurately. Taking into account the system deviations of the design matrix elements, the least square model is constructed using the Mahalanobis distance as the metric, and parameters are solved using the generalized eigenvalue method. The systematic error can be reduced theoretically. Experiment on different terrain images of TH-1 shows that the image correction accuracy of the proposed method is improved by more than 36 times compared with the traditional method, and the precision consistency is superior, which is of great significance to improving the accuracy of RPC parameters estimation and satellite imagery positioning.

Key words: rational polynomial coefficients, heteroscedastic estimation, Mahalanobis distance, generalized eigenvalue

中图分类号: 

  • P236