[1] |
乔瑞秀, 陈刚, 龚国良, 等. 一种高性能可重构深度卷积神经网络加速器[J]. 西安电子科技大学学报, 2019,46(3):130-139.
|
|
QIAO Ruixiu, CHEN Gang, GONG Guoliang, et al. High Performance Reconfigurable Accelerator for Deep Convolutional Neural Networks[J]. Journal of Xidian University, 2019,46(3):130-139.
|
[2] |
HEIDARI M, SHAMSI H. Analog Programmable Neuron and Case Study on VLSI Implementation of Multi-layer Perceptron (MLP)[J]. Microelectronics Journal, 2019,84:36-47.
doi: 10.1016/j.mejo.2018.12.007
|
[3] |
TOYAMA Y, YOSHIOKA K, BAN K, et al. An 8 Bit 12.4 TOPS/W Phase-domain MAC Circuit for Energy-constrained Deep Learning Accelerators[J]. IEEE Journal of Solid-State Circuits, 2019,54(10):2730-2742.
doi: 10.1109/JSSC.4
|
[4] |
沈耀坡, 梁煜, 张为. 一种高性能快速傅里叶变换的硬件设计[J]. 西安电子科技大学学报, 2018, 45(3):63-67+96.
|
|
SHEN Yaopo, LIANG Yu, ZHANG Wei. Hardware Efficient Fast Fourier Transform Architecture[J]. Journal of Xidian University, 2018, 45(3):63-67+96.
|
[5] |
SEO Y H, KIM D W. A New VLSI Architecture of Parallel Multiplier-accumulator Based on Radix-2 Modified Booth Algorithm[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2010,18(2):201-208.
doi: 10.1109/TVLSI.2008.2009113
|
[6] |
HOANG T T, SJALANDER M, LARSSON-EDEFORS P, et al. A High-speed, Energy-efficient Two-cycle Multiply-accumulate (MAC) Architecture and Its Application to a Double-throughput MAC Unit[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010,57(12):3073-3081.
doi: 10.1109/TCSI.2010.2091191
|
[7] |
EFTAXIOPOULOS N, ZERVAKIS G, PEKMESTZI K, et al. High Performance MAC Designs[C]// Proceedings of the 2014 9th International Design and Test Symposium. Piscataway: IEEE, 2014: 30-35.
|
[8] |
LIU W Q, CAO T, YIN P P, et al. Design and Analysis of Approximate Redundant Binary Multipliers[J]. IEEE Transactions on Computers, 2019,68(6):804-819.
doi: 10.1109/TC.12
|
[9] |
GUPTA P, GUPTA A, ASATI A, et al. Ultra Low Power MUX Based Compressors for Wallace and Dadda Multipliers in Sub-threshold Regime[J]. American Journal of Engineering and Applied Sciences, 2015,8:702-716.
doi: 10.3844/ajeassp.2015.702.716
|
[10] |
MEWADA M, ZAVERI M, THAKKER R. Improving the Performance of Transmission Gate and Hybrid CMOS Full Adders in Chain and Tree Structure Architectures[J]. Integration, 2019,69:381-392.
doi: 10.1016/j.vlsi.2019.09.002
|
[11] |
CARBOGNANI F, BUERGIN F, FELBER N, et al. Transmission Gates Combined with Level-restoring CMOS Gates Reduce Glitches in Low-power Low-frequency Multipliers[J]. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2008,16(7):830-836.
doi: 10.1109/TVLSI.2008.2000457
|
[12] |
PUDI V, SRIDHARAN K. Low Complexity Design of Ripple Carry and Brent-Kung Adders in QCA[J]. IEEE Transactions on Nanotechnology, 2012,11(1):105-119.
doi: 10.1109/TNANO.2011.2158006
|
[13] |
KUANG S R, WANG J P, GUO C Y. Modified Booth Multipliers with a Regular Partial Product Array[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2009,56(5):404-408.
doi: 10.1109/TCSII.2009.2019334
|
[14] |
CARBOGNANI F, BUERGIN F, FELBER N, et al. A Low-power Transmission-gate-based 16-bit Multiplier for Digital Hearing Aids[J]. Analog Integrated Circuits and Signal Processing, 2008,56(1-2):5-12.
doi: 10.1007/s10470-007-9086-0
|
[15] |
SARADA M., SRINIVASULU A, PAL D. Novel, Low-supply, Differential XOR/ XNOR with Rail-to-rail Swing, for Hamming-code Generation[J]. International Journal of Electronics Letters, 2018,6(3):272-287.
doi: 10.1080/21681724.2017.1357761
|
[16] |
YEH W C, JEN C W. High-speed Booth Encoded Parallel Multiplier Design[J]. IEEE Transactions on Computers, 2000,49(7):692-701.
doi: 10.1109/12.863039
|