[1] |
CHENG S, DONG Y, PANG T, et al. Improving Black-box Adversarial Attacks with a Transfer-based Prior[C/OL].[2020-10-22].https://arxiv.org/abs/1906.06919.
|
[2] |
ZHAO Z, DUA D, SINGH S. Generating Natural Adversarial Examples[C/OL] [2020-10-22].https://openreview.net/pdf?id=H1BLjgZCb.
|
[3] |
IIYAS A, ENGSTROM L, ATHALYE A, et al. Black-box Adversarial Attacks with Limited Queries and Information[C/OL].[2020-10-22].https://arxiv.org/pdf/1804.08598.pdf.
|
[4] |
IIYAS A, ENGSTROM L, MADRY A. Prior Convictions:Black-box Adversarial Attacks with Bandits and Priors[C/OL].[2020-10-22].https://arxiv.org/pdf/1807.07978.pdf.
|
[5] |
GUO C, GARDNER J R, YOU Y, et al. Simple Black-box Adversarial Attacks[C/OL].[2020-10-22].https://arxiv.org/abs/1905.07121.
|
[6] |
GOODFELLOW I J, SHLENS J, SZEGEDY C.Explaining and Harnessing Adversarial Examples[C/OL].[2020-10-22].https://arxiv.org/pdf/1412.6572.pdf.
|
[7] |
MOOSAVI-DEZFOOLI S M, FAWZI A, FROSSARD P. Deepfool:a Simple and Accurate Method to Fool Deep Neural Networks [C] //Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2016: 2574-2582.
|
[8] |
THYS S, VAN RANST W, GOEDEME T. Fooling Automated Surveillance Cameras:Adversarial Patches to Attack Person Detection[C/OL].[2020-10-22].https://arxiv.org/abs/1904.08653v1.
|
[9] |
LI J, JI S, DU T, et al. TextBugger:Generating Adversarial Text against Real-world Applications[C/OL].[2020-10-22].https://arxiv.org/pdf/1812.05271.pdf.
|
[10] |
BRENDEL W, RAUBER J, BETHGE M. Decision-based Adversarial Attacks:Reliable Attacks against Black-box Machine Learning Models[C/OL].[2020-10-22].https://arxiv.org/pdf/1712.04248.pdf.
|
[11] |
SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing Properties of Neural Networks[C/OL].[2020-10-22].https://arxiv.org/abs/1312.6199.
|
[12] |
OREN S S. On the Selection of Parameters in Self Scaling Variable Metric Algorithms[J]. Mathematical Programming, 1974,7(1):351-367.
|
[13] |
KURAKIN A, GOODFELLOW I, BENGIO S. Adversarial Examples in the Physical World[C/OL].[2020-10-22].https://arxiv.org/abs/1607.02533.
|
[14] |
PAPERNOT N, MC DANIEL P, JHA S, et al. The Limitations of Deep Learning in Adversarial Settings[C/OL].[2020-10-22].https://arxiv.org/pdf/1511.07528.pdf.
|
[15] |
MOOSAVI-DEZFOOLI S M, FAWZI A, FAWZI O, et al. Universal Adversarial Perturbations [C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017: 1765-1773.
|
[16] |
ABADI M, AGARWAL A, BARHAM P, et al. Tensorflow:Large-scale Machine Learning on Heterogeneous Distributed Systems[EB/OL].[2020-10-16].https://arxiv.org/pdf/1603.04467v1.pdf.
|
[17] |
PAPERNOT N, GOODFELLOW I, SHEATSLEY R, et al. Cleverhans v2.0.0:an Adversarial Machine Learning Library[EB/OL].[2020-10-20].https://arxiv.org/pdf/1610.00768v4.pdf.
|
[18] |
LECUN Y, CORTES C. The MNIST database of handwritten digits[EB/OL].[2020-10-20].https://www.researchgate.net/publication/247931959_The_mnist_database_of_handwritten_digits.
|
[19] |
KRIZHEVSKY A.Learning Multiple Layers of Features from Tiny Images[D/OL].[ 2020- 10- 16]. http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=6A53249D656707B0A5E27DEC73ABF8B2?doi=10.1.1.222.9220&rep=rep1&type=pdf.
|
[20] |
DENG J, DONG W, SOCHER R, et al. Imagenet:a Large-scale Hierarchical Image Database [C]// Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2009: 248-255.
|
[21] |
LECUN Y, HAFFNER P, BOTTOU L, et al. Object Recognition with Gradient-based Learning [C]// Lecture Notes in Computer Science:1681.Berlin:Springer Verlag, 1999: 319-345.
|
[22] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet Classification with Deep Convolutional Neural Networks [C]//Advances in Neural Information Processing Systems:2.Vancouver:Neural Information Processing Systems Foundation, 2012: 1097-1105.
|
[23] |
SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the Inception Architecture for Computer Vision [C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society, 2016: 2818-2826.
|
[24] |
HE K, ZHANG X, REN S, et al. Deep Residual Learning for Image Recognition [C]//Proceedings of the 2016 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington:IEEE Computer Society, 2016: 770-778.
|
[25] |
HUANG G, LIU Z, VAN DER MAATEN L, et al.Densely Connected Convolutional Networks [C]// Proceedings of the 2017 30th IEEE Conference on Computer Vision and Pattern Recognition.Piscataway:IEEE, 2017: 2261-2269.
|
[26] |
YUAN X, HE P, ZHU Q, et al. Adversarial Examples:Attacks and Defenses for Deep Learning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019,30(9):2805-2824.
doi: 10.1109/TNNLS.2018.2886017
pmid: 30640631
|
[27] |
SIMONYAN K, ZISSERMAN A. Very Deep Convolutional Networks for Large-scale Image Recognition [C]// Proceedings of the 2015 3rd International Conference on Learning Representations.San Diego:ICLR, 2015: 149801.
|
[28] |
KURAKIN A, GOODFELLOW I J, BENGIO S. Adversarial Machine Learning at Scale [C]// Proceedings of the 2017 5th International Conference on Learning Representations.San Diego:ICLR, 2017: 149804.
|
[29] |
PAPERNOT N, MCDANIEL P, WU X, et al. Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks [C]// Proceedings of the 2016 IEEE Symposium on Security and Privacy.Piscataway:IEEE, 2016: 582-597.
|
[30] |
SAMANGOUEI P, KABKAB M, CHELLAPPA R. Defense-GAN:Protecting Classifiers against Adversarial Attacks Using Generative Models [C]// Proceedings of the 2018 6th International Conference on Learning Representations.San Diego:ICLR, 2018: 149806.
|