西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (4): 120-127.doi: 10.19665/j.issn1001-2400.2021.04.016

• 计算机科学与技术&网络空间安全 • 上一篇    下一篇

一种自适应模拟退火粒子群优化算法

闫群民1,2(),马瑞卿1(),马永翔3(),王俊杰3()   

  1. 1.西北工业大学 自动化学院,陕西 西安 710072
    2.陕西省工业自动化重点实验室,陕西 汉中 723001
    3.陕西理工大学 电气工程学院,陕西 汉中 723001
  • 收稿日期:2020-06-14 出版日期:2021-08-30 发布日期:2021-08-31
  • 作者简介:闫群民(1980—),男,教授,西北工业大学博士研究生,E-mail: yanqunm@163.com|马瑞卿(1963—),男,教授,博士,E-mail: marq@nwpu.edu.cn|马永翔(1965—),男,教授,硕士,E-mail: mayx@snut.edu.cn|王俊杰(1996—),男,陕西理工大学硕士研究生,E-mail: wangjunjie9675@163.com
  • 基金资助:
    陕西省教育厅重点科学研究计划项目(20JS018)

Adaptive simulated annealing particle swarm optimization algorithm

YAN Qunmin1,2(),MA Ruiqing1(),MA Yongxiang3(),WANG Junjie3()   

  1. 1. School of Automation,Northwestern Polytechnical University,Xi’an 710072,China
    2. Shaanxi Key Laboratory of Industrial Automation,Hanzhong 723001,China
    3. Department of Electrical Engineering,Shaanxi University of Technology,Hanzhong 723001,China
  • Received:2020-06-14 Online:2021-08-30 Published:2021-08-31

摘要:

为了提高粒子群算法的寻优速度和精度,避免陷入局部优解,提出一种自适应模拟退火粒子群优化算法。采用双曲正切函数来控制惯性权重系数,进行非线性自适应变化;利用线性变化策略控制社会学习因子和自我学习因子,达到改变不同阶段寻优重点的目的;引入模拟退火操作,根据种群的初始状态设置一个温度,根据米特罗波利斯准则和温度指导种群以一定的概率接受差解,保证了算法跳出局部最优解的能力。为验证这种算法的效果,选择7种典型测试函数与已有文献中提出的5种粒子优化算法进行对比实验,根据寻优结果的平均值、标准差以及迭代次数等数据,证明文中所提算法在迭代精度、收敛速度以及稳定性上都有很大的提升,有效地弥补了经典粒子群算法的缺陷。

关键词: 粒子群优化, 模拟退火, 惯性权重系数, 自适应调整策略

Abstract:

Particle swarm optimization is widely used in various fields because of the few parameters to be set and the simple calculation structure.In order to improve the optimization speed and accuracy of the PSO,and to avoid falling into the local optimal solution,an adaptive simulated annealing PSO is proposed,which uses the hyperbolic tangent function to control the inertia weight factor for nonlinear adaptive changes,uses linear change strategies to control 2 learning factors,introduces the simulation annealing operation,set a temperature according to the initial state of the population,guide the population to accept the difference solution with a certain probability according to the Metropolis criterion,and ensure the ability to jump out of the local optimal solution.To verify the effect of the algorithm proposed in this paper,7 typical test functions and 5 algorithms proposed in the literature are selected for comparison and testing.According to the average value,standard deviation and number of iterations of the optimization results,the algorithm proposed in this paper has greatly improved the iteration accuracy,convergence speed and stability so as to overcome the shortcomings of particle swarm optimization.

Key words: particle swarm optimization, simulated annealing, inertia weight factor, self-adaptive adjust tactics

中图分类号: 

  • TP301.6