西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (4): 159-167.doi: 10.19665/j.issn1001-2400.2021.04.021
收稿日期:
2020-04-24
出版日期:
2021-08-30
发布日期:
2021-08-31
作者简介:
宋剑桥(1994—),男,太原理工大学硕士研究生,E-mail: 基金资助:
SONG Jianqiao(),WANG Feng(),NIU Jin(),SHI Zezhou(),MA Junhui()
Received:
2020-04-24
Online:
2021-08-30
Published:
2021-08-31
摘要:
微表情对情绪识别有着一定的作用,但在人为隐藏的情况下则容易出现误判。生理信号的识别效果虽然较为准确,但其数据的采集往往复杂,不便于用于快速的人员情绪检测中。针对上述问题,采用非接触基于色度模型的方式采集脉搏信号,并根据脉搏信号提取特征,融合提出的时空神经网络实现潜在情绪识别,平均识别率约78.59%和76.91%。实验结果表明,提出的双路潜在情绪识别框架可以很好地融合微表情和生理信号中所包含的情绪信息,在微表情识别中的效果较现阶段常用的微表情识别算法的效果有一定提升。
中图分类号:
宋剑桥,王峰,牛锦,师泽洲,马军辉. 一种面向时空神经网络的潜在情绪识别方法[J]. 西安电子科技大学学报, 2021, 48(4): 159-167.
SONG Jianqiao,WANG Feng,NIU Jin,SHI Zezhou,MA Junhui. Potential emotion recognition based on the fusion of the spatio-temporal neural network and facial pulse signals[J]. Journal of Xidian University, 2021, 48(4): 159-167.
[1] | MUKHERJEE S, VAMSHI B, REDDY K V S V K, et al. Recognizing Facial Expressions Using Novel Motion Based Features[C]//Proceedings of the Tenth Indian Conference on Computer Vision,Graphics and Image Processing.Piscataway:IEEE, 2016: 32. |
[2] |
LI X, HONG X, MOILANEN A, et al. Towards Reading Hidden Emotions:A Comparative Study of Spontaneous Micro-Expression Spotting and Recognition Methods[J]. IEEE Transactions on Affective Computing, 2018, 9(4):563-577.
doi: 10.1109/T-AFFC.5165369 |
[3] | WU Q, SHEN X B, FU X L. The Machine Knows What You Are Hiding:An Automatic Micro-Expression Recognition System[C]//Proceedings of the 4th International Conference on Affective Computing and Intelligent Interaction-Volume Part II.Springer Berlin, 2011:152-162. |
[4] |
LU H, KPALMA K, RONSIN J. Motion Descriptors for Micro-Expression Recognition[J]. Signal Processing-Image Communication, 2018, 67:108-117.
doi: 10.1016/j.image.2018.05.014 |
[5] |
LIU Y J, ZHANG J K, YAN W J, et al. A Main Directional Mean Optical Flow Feature for Spontaneous Micro-Expression Recognition[J]. IEEE Transactions on Affective Computing, 2016, 7(4):299-310.
doi: 10.1109/T-AFFC.5165369 |
[6] | LI Q Y, YU J, KURIHARA T, et al. Micro-Expression Analysis by Fusing Deep Convolutional Neural Network and Optical Flow[C]//Proceedings of the 2018 5th International Conference on Control,Decision and Information Technologies.Piscataway:IEEE, 2018:265-270. |
[7] | PENG M, WU Z, ZHANG Z H, et al. From Macro to Micro Expression Recognition:Deep Learning on Small Datasets Using Transfer Learning[C]//Proceedings of the 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition.Piscataway:IEEE, 2018:657-661. |
[8] |
WANG S J, LI B J, LIU Y J, et al. Micro-Expression Recognition with Small Sample Size by Transferring Long-Term Convolutional Neural Network[J]. Neurocomputing, 2018, 312:251-262.
doi: 10.1016/j.neucom.2018.05.107 |
[9] | KIM D H, BADDAR W J, RO Y M. Micro-expression Recognition with Expression-State Constrained Spatio-Temporal Feature Representations[C]//Proceedings of the 2016 ACM Multimedia Conference.Amsterdam:ACM, 2016:382-386. |
[10] |
KIM D H, BADDAR W, JANG J, et al. Multi-Objective Based Spatio-Temporal Feature Representation Learning Robust to Expression Intensity Variations for Facial Expression Recognition[J]. IEEE Transactions on Affective Computing, 2019, 10(2):223-236.
doi: 10.1109/T-AFFC.5165369 |
[11] | KHOR H Q, SEE J, PHAN R C W, et al. Enriched Long-term Recurrent Convolutional Network for Facial Micro-Expression Recognition[C]//Proceedings of the 2018 13th IEEE International Conference on Automatic Face and Gesture Recognition.Piscataway:IEEE, 2018:667-674. |
[12] |
FRANTZIDIS C A, BRATSAS C, PAPADELIS C L, et al. Toward Emotion Aware Computing:an Integrated Approach Using Multichannel Neurophysiological Recordings and Affective Visual Stimuli[J]. IEEE Transactions on Information Technology in Biomedicine, 2010, 14(3):589-597.
doi: 10.1109/TITB.2010.2041553 |
[13] |
KHEZRI M, FIROOZABADI M, SHARAFAT A R. Reliable Emotion Recognition System Based on Dynamic Adaptive Fusion of Forehead Biopotentials and Physiological Signals[J]. Computer Methods and Programs in Biomedicine, 2015, 122(2):149-164.
doi: 10.1016/j.cmpb.2015.07.006 |
[14] |
TORRES-VALENCIA C, ALVAREZ-LOPEZ M, OROZCO-GUTIERREZ A. SVM-Based Feature Selection Methods for Emotion Recognition from Multimodal Data[J]. Journal on Multimodal User Interfaces, 2017, 11(1):9-23.
doi: 10.1007/s12193-016-0222-y |
[15] |
DUC B, BIGUN E S, BIGUN J, et al. Fusion of Audio and Video Information for Multi Modal Person Authentication[J]. Pattern Recognition Letters, 1997, 18(9):835-843.
doi: 10.1016/S0167-8655(97)00071-8 |
[16] |
BAILENSON J N, PONTIKAKIS E D, MAUSS I B, et al. Real-Time Classification of Evoked Emotions Using Facial Feature Tracking and Physiological Responses[J]. International Journal of Human Computer Studies, 2008, 66(5):303-317.
doi: 10.1016/j.ijhcs.2007.10.011 |
[17] | TRIPATHI S, BEIGI H. Multi-modal Emotion Recognition on IEMOCAP Dataset Using Deep Learning[J/OL].[2020-03-20].https://arxiv.org/pdf/1804.05788.pdf . |
[18] | ZHANG D, WU L, LI S, et al. Multi-Modal Language Analysis with Hierarchical Interaction-Level and Selection-Level Attentions[C]//Proceedings of the 2019 IEEE International Conference on Multimedia and Expo.Piscataway:IEEE Computer Society, 2019:724-729. |
[19] |
VIOLA P, JONES M. Robust Real-Time Object Detection[J]. International Journal of Computer Vision, 2001, 57:137-154.
doi: 10.1023/B:VISI.0000013087.49260.fb |
[20] |
LIBERZON D, TEMPO R. Common Lyapunov Functions and Gradient Algorithms[J]. IEEE Transactions on Automatic Control, 2004, 49(6):990-994.
doi: 10.1109/TAC.2004.829632 |
[21] |
COSTA M, GOLDBERGER A, PENG C K. Multiscale Entropy Analysis of Biological Signals[J]. Physical Review E, 2005, 71(2):21906.
doi: 10.1103/PhysRevE.71.021906 |
[22] | NITISH S, HINTON G, KRIZHEVSKY A, et al. Dropout:a Simple Way to Prevent Neural Networks from Overfitting[J]. Journal of Machine Learning Research, 2014, 15(1):1929-1958. |
[23] |
HUANG X H, ZHAO G Y, HONG X P, et al. Spontaneous Facial Micro-Expression Analysis Using Spatiotemporal Completed Local Quantized Patterns[J]. Neurocomputing, 2016, 175:564-578.
doi: 10.1016/j.neucom.2015.10.096 |
[24] |
LI J, WANG Y D, JOHN S, et al. Micro-Expression Recognition Based on 3D Flow Convolutional Neural Network[J]. Pattern Analysis and Applications, 2019, 22(4):1331-1339.
doi: 10.1007/s10044-018-0757-5 |
[25] |
LIU Y J, ZHANG J K, YAN W J, et al. A Main Directional Mean Optical Flow Feature for Spontaneous Micro-Expression Recognition[J]. IEEE Transactions on Affective Computing, 2016, 7(4):299-310.
doi: 10.1109/T-AFFC.5165369 |
[1] | 李源,崔玉爽,王伟. 一种基于字词双通道网络的文本情感分析方法[J]. 西安电子科技大学学报, 2021, 48(6): 179-186. |
[2] | 吕文凯,杨鹏飞,丁韵青,张鹤于,郑天洋. JEDERL:一种异构计算平台任务调度优化算法[J]. 西安电子科技大学学报, 2021, 48(6): 67-74. |
[3] | 刘佳玮,张文辉,寇晓丽,李雁妮. 增强型深度对抗样本攻击防御算法[J]. 西安电子科技大学学报, 2021, 48(6): 23-31. |
[4] | 于浩洋,尹良,李书芳,吕顺. 生成对抗网络小样本雷达调制信号识别算法[J]. 西安电子科技大学学报, 2021, 48(6): 96-104. |
[5] | 胡代旺,焦一源,李雁妮. 一种新型高效的文库知识图谱实体关系抽取算法[J]. 西安电子科技大学学报, 2021, 48(6): 75-83. |
[6] | 孙彦景,魏力,张年龙,云霄,董锴文,葛敏,程小舟,侯晓峰. 联合DD-GAN和全局特征的井下人员重识别方法[J]. 西安电子科技大学学报, 2021, 48(5): 201-211. |
[7] | 闫佳,曹玉东,任佳兴,陈冬昊,李晓会. 深度非对称压缩型哈希算法[J]. 西安电子科技大学学报, 2021, 48(5): 212-221. |
[8] | 宁阳,杜建超,韩硕,杨传凯. 改进DeeplabV3+的火焰分割与火情分析方法[J]. 西安电子科技大学学报, 2021, 48(5): 38-46. |
[9] | 周鹏,杨军. 采用神经网络架构搜索的遥感影像分割方法[J]. 西安电子科技大学学报, 2021, 48(5): 47-57. |
[10] | 张书伟,李俊民. 一种复杂监控场景下的人体检测算法[J]. 西安电子科技大学学报, 2021, 48(5): 68-77. |
[11] | 戚艳军,孔月萍,王佳婧,朱旭东. 一种LSTM与CNN相结合的步态识别方法[J]. 西安电子科技大学学报, 2021, 48(5): 78-85. |
[12] | 杨云航,闵连权. 采用空洞卷积的多尺度融合草图识别模型[J]. 西安电子科技大学学报, 2021, 48(5): 92-99. |
[13] | 董如婵,焦李成,赵进,沈维燕. 一种深度融合机制的遥感图像目标检测技术[J]. 西安电子科技大学学报, 2021, 48(5): 128-138. |
[14] | 李鹏,冯存前,许旭光,唐子翔. 一种利用贝叶斯优化的弹道目标微动分类网络[J]. 西安电子科技大学学报, 2021, 48(5): 139-148. |
[15] | 程德,郝毅,周靖宇,王楠楠,高新波. 利用混合双通路神经网络的跨模态行人重识别[J]. 西安电子科技大学学报, 2021, 48(5): 190-200. |
|