西安电子科技大学学报 ›› 2021, Vol. 48 ›› Issue (4): 159-167.doi: 10.19665/j.issn1001-2400.2021.04.021

• 计算机科学与技术&网络空间安全 • 上一篇    下一篇

一种面向时空神经网络的潜在情绪识别方法

宋剑桥(),王峰(),牛锦(),师泽洲(),马军辉()   

  1. 太原理工大学 信息与计算机学院,山西 太原 030024
  • 收稿日期:2020-04-24 出版日期:2021-08-30 发布日期:2021-08-31
  • 作者简介:宋剑桥(1994—),男,太原理工大学硕士研究生,E-mail: 505358812@qq.com|王 峰(1975—),男,教授,博士,E-mail: wangfeng@tyut.edu.cn|牛 锦(1995—),男,太原理工大学硕士研究生,E-mail: 691213291@qq.com|师泽洲(1997—),男,太原理工大学硕士研究生,E-mail: 945660699@qq.com|马军辉(1996—),男,太原理工大学硕士研究生,E-mail: 2690958812@qq.com
  • 基金资助:
    山西省研究生教育创新项目(523)

Potential emotion recognition based on the fusion of the spatio-temporal neural network and facial pulse signals

SONG Jianqiao(),WANG Feng(),NIU Jin(),SHI Zezhou(),MA Junhui()   

  1. College of Information and Computer,Taiyuan University of Technology,Taiyuan 030024,China
  • Received:2020-04-24 Online:2021-08-30 Published:2021-08-31

摘要:

微表情对情绪识别有着一定的作用,但在人为隐藏的情况下则容易出现误判。生理信号的识别效果虽然较为准确,但其数据的采集往往复杂,不便于用于快速的人员情绪检测中。针对上述问题,采用非接触基于色度模型的方式采集脉搏信号,并根据脉搏信号提取特征,融合提出的时空神经网络实现潜在情绪识别,平均识别率约78.59%和76.91%。实验结果表明,提出的双路潜在情绪识别框架可以很好地融合微表情和生理信号中所包含的情绪信息,在微表情识别中的效果较现阶段常用的微表情识别算法的效果有一定提升。

关键词: 潜在情绪识别, 色度模型, 人脸脉搏信号, 深度学习, 神经网络, 决策融合

Abstract:

(Micro) expression has a certain effect on emotion recognition,but in the case of artificial concealment,it is prone to misjudgment.Although the recognition effect of physiological signals is more accurate,the data collection is often complicated,which is not convenient for rapid personnel emotion checking.In response to the above problem,this paper adopts a non-contact chromatic model-based method to collect pulse signals,extract features based on the pulse signals,and integrate the proposed spatio-temporal neural network to realize potential emotion recognition.Experimental results show that the proposed two-way latent emotion recognition framework can well integrate the emotion information contained in micro-expressions and physiological signals,and that the effect in micro-expression recognition is improved to some extent compared with the current micro-expression recognition algorithms commonly used at this stage.

Key words: latent emotion recognition, chroma model, deeplearning, facial pulse signal, neural networks, decision fusion

中图分类号: 

  • TP183