西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (1): 152-160.doi: 10.19665/j.issn1001-2400.2022.01.015

• 信息与通信工程 • 上一篇    下一篇

移动边缘计算场景下基于免疫优化的任务卸载

朱思峰1(),孙恩林1(),柴争义2()   

  1. 1.天津城建大学 计算机与信息工程学院,天津 300384
    2.天津工业大学 计算机科学与技术学院,天津 300387
  • 收稿日期:2020-11-16 出版日期:2022-02-20 发布日期:2022-04-27
  • 通讯作者: 柴争义
  • 作者简介:朱思峰(1975—),男,教授,博士,E-mail: zhusifeng@163.com;|孙恩林(1996—),男,天津城建大学硕士研究生,E-mail: 1138896451@qq.com
  • 基金资助:
    国家自然科学基金(61972456);国家自然科学基金(62172298);泛网无线通信教育部重点实验室(BUPT)开放课题(KFKT-2020101);天津市自然科学基金一般项目(20JCYBJC00140);天津市研究生科研创新项目(人工智能专项)(2020YJSZXS25)

Noveltask offloading solutions based on immune optimization inmobile edge computing

ZHU Sifeng1(),SUN Enlin1(),CHAI Zhengyi2()   

  1. 1. School of Computer and Information Engineering,Tianjin Chengjian University,Tianjin 300384,China
    2. School of Computer Science & Technology,Tiangong University,Tianjin 300387,China
  • Received:2020-11-16 Online:2022-02-20 Published:2022-04-27
  • Contact: Zhengyi CHAI

摘要:

移动边缘计算通过将计算资源和存储资源下沉到移动网络的边缘,可以减少移动终端的任务计算时延和能耗,从而有效满足移动互联网、物联网高速发展所需的高回传带宽、低时延的要求。计算卸载作为移动边缘计算的一个主要优势,它通过将繁重的计算任务迁移到边缘服务器来提高移动服务能力。针对移动边缘计算场景下移动终端应用的低时延和低能耗的卸载需求,给出了一种最小化系统响应时延和移动终端能耗的任务卸载方案。首先在对系统响应时延和移动终端能耗进行综合考虑的基础上,构建了移动边缘计算场景下的任务切分模型、时延模型、能耗模型和任务卸载优化模型;然后,设计了一种改进的免疫优化算法,并给出了基于免疫优化的任务卸载方案;最后将文中方案与LOCAL Execution方案和基于遗传算法的卸载方案进行了对比实验。仿真实验表明,文中方案在时延和能耗的综合代价上优于文献方案,可以满足移动终端应用低时延和低能耗的卸载需求。

关键词: 移动边缘计算, 任务卸载, 免疫优化算法, 任务处理, 卸载时延

Abstract:

Mobile edge computing can reduce the task computing delay and energy consumption of mobile terminals by sinking computing resources and storage resources to the edge of the mobile network,so as to effectively meet the requirements of high return bandwidth and low delay required by the rapid development of the mobile Internet and Internet of things.As a major advantage of mobile edge computing,the computing offload improves the mobile service capability by migrating heavy computing tasks to the edge server.In this paper,a task offloading solutions to minimize system response delay and mobile terminal energy consumption is proposed for mobile terminal applications with low latency and low energy consumption in mobile edge computing scenarios.First,based on the comprehensive consideration of the delay and energy consumption of mobile terminal execution tasks,the task slicing model,time delay model,energy consumption model and target optimization model are constructed;second,an improved immune optimization algorithm and a task offloading solution based on immune optimization are proposed;finally,the proposed solutions are compared with the LOCAL Execution solutions and the offloading solutions based on the genetic algorithm.Simulation results show that the proposed scheme is better than the literature scheme in terms of the comprehensive cost of delay and energy consumption,and can meet the unloading requirements of mobile terminal applications with low delay and low energy consumption.

Key words: mobile edge computing, task offload, immune algorithm, task processing, offloading delay

中图分类号: 

  • TP391