西安电子科技大学学报 ›› 2022, Vol. 49 ›› Issue (6): 15-22.doi: 10.19665/j.issn1001-2400.2022.06.003

• 信息与通信工程 • 上一篇    下一篇

面向多源时差定位的鲁棒节点部署算法

赵越1(),李赞1(),李冰2(),路晓菊3(),郝本建1()   

  1. 1.西安电子科技大学 通信工程学院,陕西 西安 710071
    2.中国人民解放军31007部队,北京 100000
    3.中国人民解放军69036部队,新疆维吾尔自治区 乌鲁木齐 830000
  • 收稿日期:2022-01-10 出版日期:2022-12-20 发布日期:2023-02-09
  • 作者简介:赵 越(1994—),男,讲师,博士,E-mail:yuezhao@xidian.edu.cn|李 赞(1975—),女,教授,博士,E-mail:zanli@xidian.edu.cn|李 冰(1978—),男,高级工程师,博士,E-mail:326220193@qq.com|路晓菊(1980—),女,工程师,E-mail:545844326@qq.com|郝本建(1982—),男,教授,博士,E-mail:bjhao@xidian.edu.cn
  • 基金资助:
    国家自然科学基金(62101403);国家杰出青年科学基金(61825104)

Robust node placement in TDOA-based multiple sources localization

ZHAO Yue1(),LI Zan1(),LI Bing2(),LU Xiaoju3(),HAO Benjian1()   

  1. 1. School of Telecommunications Engineering,Xidian University,Xi’an 710071,China
    2. Unit 31007 of PLA,Beijing 100000,China
    3. Unit 69036 of PLA,Urumqi 830000,China
  • Received:2022-01-10 Online:2022-12-20 Published:2023-02-09

摘要:

在基于到达时间差(TDOA)参数实现信号源定位的频谱监测网络中,各节点形成的空间几何构型决定了对于信号源的空间分辨率,继而影响信号源的定位精度。针对固定式与机动式节点共存的多源定位场景,研究存在信号源位置不确定区域、到达时间差测量误差不确定区间时,鲁棒的机动式节点部署算法。首先构建固定式与机动式共存的多源时差定位场景,然后提出加权平均最差克拉美罗界(WAW-CRLB)作为存在多种不确定性时定位网络对于信号源定位精度的鲁棒数学表征;其次构建以加权平均最差克拉美罗界为目标函数、机动式节点的空间位置为决策变量的非凸优化问题,并利用遗传算法进行求解。仿真结果验证了存在多种不确定性时,所提鲁棒节点部署算法对比两种基准算法的性能优势,还验证了机动式节点个数增加时对定位精度的提升作用。

关键词: 频谱监测, 时差定位, 节点部署, 鲁棒优化, 遗传算法

Abstract:

This paper focuses on the scenario consisting of nodes with fixed positions and nodes with flexible positions,and studies the robust placement method of the flexible nodes in the presence of the uncertainty area of sources and uncertainty interval of TDOA noise strength.First,a TDOA-based multiple source localization scenario with fixed nodes and flexible nodes is constructed.Then,the weighted average worst-case CRLB (WAW-CRLB) is proposed to robustly measure the source localization accuracy in the presence of various uncertainties.Second,an optimization problem is formulated with the objective function as the WAW-CRLB and the decision variable as the position vectors of flexible nodes.The problem is then resolved by the genetic algorithm.Simulation results validate the performance advantage of the proposed robust node placement algorithm with two baselines;and verify accuracy improvement with the number of flexible nodes.

Key words: spectrum monitoring, TDOA localization, node placement, robust optimization, genetic algorithm

中图分类号: 

  • TN92